

Introduction to NetCDF-4

Ed Hartnett, Unidata/UCAR
NetCDF Workshop July 25 – 26, 2011

What is NetCDF-4?

● A project to allow the netCDF library to use
HDF5 as a data store.

● Joint project between netCDF and HDF teams.
● Allows netCDF users to take advantage of

HDF5 features without have to know (too much)
about HDF5.

New NetCDF Binary Format

● Before the netCDF-4 project, there were two
binary formats: classic and 64-bit offset.

● NetCDF-4.0 introduced a new binary format:
netCDF-4/HDF5.

● It is an HDF5 file, with some additional meta-
data.

● It is read by netCDF code just like any other
netCDF file.

Timeline

● Initial netCDF code development 2003 – 2005
at Unidata.

● Co-released netCDF-4.0 with HDF5 1.8.0 in
2008.

● Is maintained and developed at the Unidata
Program Center.

● Most recent release: 4.1.3, June, 2011.

Some Nice HDF5 Features

● Performance: chunking, endianness control,
parallel I/O, deflation.

● New data types: unsigned ints, user-defined
types.

● Hierarchical organization within file: groups.
● Less restrictions on sizes, number of unlimited

dimensions.

Interoperability Advantage

● With netCDF-4/HDF5 files, the data can be
easily understood by both netCDF and HDF5
applications.

● With (sometimes) extra effort, HDF5
applications can write netCDF readable files.

● No more converting between HDF5 and
netCDF!

● How many people in the room have written
such a program?

● We have slain a horrible monster.

Backward Compatibility

● Backward compatibility was the first
requirement of the netCDF-4 project.

● Classic binary format is still the default output
format. NetCDF-4/HDF5 files must be specified
at create-time.

● But how to handle code compatibility?
● If netCDF-4 allows multiple unlimited

dimensions (for example), how to ensure code
compatibility in all cases?

Backward Code Compatibility Mode

● In order to provide the exact same behavior in
existing code, netCDF-4/HDF5 files can be
created with a special flag:
NC_CLASSIC_MODEL

● This is a backward compatibility flag. It restricts
what is allowed in the file.

● If the user attempts to (for example) create two
unlimited dimensions in this file, an error will
result, just as with classic format.

● NetCDF-4/HDF5 files produced without this flag
can have any number of unlimited dimensions.

Don't Need CLASSIC_MODEL for
Code Compatibility

● The CLASSIC_MODEL is not needed for
backward code compatibility if you don't care
about erroring out calls to the enhanced model
features.

● CLASSIC_MODEL just makes netCDF-4 more
strict.

● The data format is still HDF5, and no different
from the same file created without
CLASSIC_MODEL, except the
CLASSIC_MODEL file will always reject any
enhanced model feature.

CLASSIC_MODEL and NetCDF
Testing

● The CLASSIC_MODEL flag is needed for
existing netCDF tests to run on netCDF-4/HDF5
files.

● These tests (see directories nctest, nc_test)
check that the correct errors are returned for
conditions like attempting to define two
unlimited dimensions.

● With the CLASSIC_MODEL flag, netCDF-
4/HDF5 files are restricted to the classic model,
so that such tests will work.

Creating Different Formats: Classic

● Classic file (the default):
nc_create(“file.nc”, 0, &ncid);

nc_def_dim(...);

nc_def_var(...);

nc_put_var(...)

nc_close(...)

Creating Different Formats: 64-bit
Offset

● 64-bit offset file:
nc_create(“file.nc”, NC_64BIT_OFFSET, &ncid);

nc_def_dim(...);

nc_def_var(...);

nc_put_var(...)

nc_close(...)

Creating Different Formats:
NetCDF-4/HDF5

● NetCDF-4/HDF5 file:
nc_create(“file.nc”, NC_NETCDF4, &ncid);

nc_def_dim(...);

nc_def_var(...);

nc_put_var(...)

nc_close(...)

Creating Different Formats:
NetCDF-4/HDF5 with
CLASSIC_MODEL

● NetCDF-4/HDF5 file:
nc_create(“file.nc”, NC_NETCDF4|NC_CLASSIC_MODEL, &ncid);

nc_def_dim(...);

nc_def_var(...);

nc_put_var(...)

nc_close(...)

The Difference Between Last Two
Examples

● Both will work the same.
● If opened later, the file without

CLASSIC_MODEL can have additional
unlimited dimensions, groups, user-defined
types, and other enhanced model features
added to the file.

● The file created with CLASSIC_MODEL can
never enjoy these nifty new features.

Build NetCDF without NetCDF-4
Features

● NetCDF-4 requires that the HDF5 and zlib
libraries be installed.

● It also adds a lot of code to the library.
● The configure option –disable-netcdf-4 will turn

off all netCDF-4 features, and HDF5 will not be
required (zlib will be required unless the remote
data client is also turned off).

● Such a build will not read or write netCDF-
4/HDF5 files.

● Why? Embedded platforms, limited platforms,
or quick build.

How to Upgrade Code to Write
NetCDF-4/HDF5

● Install latest netCDF release.
● Change nc_create calls to include the

NC_NETCDF4 flag.
● Optionally control performance features like

chunking.
● Optionally add deflation.
● Recompile, relink, and run.

Summary: How to Upgrade Existing
Applications to Read NetCDF-

4/HDF5 Files

● Install latest version of netCDF.
● Link to it.
● Only classic model is handled without extra

code.
● Deflation is handled transparently. Data are

uncompressed in chunks as they are read.

Define vs. Data Mode

● For classic and 64-bit offset files, define and
data mode are explicitly managed by the user.

● For netCDF-4/HDF5 files, data and define mode
can be left to netCDF-4. The mode will be
switched as needed.

● So calls to nc_enddef/nc_redef can be
removed.

● This automatic mode switching is turned off for
files created with CLASSIC_MODEL flag.

Conclusion

● NetCDF-4/HDF5 is an addition to the toolbox,
not a replacement for existing formats.

● Full backward compatibility will be maintained in
the C and Fortran APIs.

● Always upgrade to the latest version of netCDF!
● Changing output data to netCDF-4/HDF5 is

optional, but easy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

