

Recent Changes to NetCDF Development
Processes

Ed Hartnett
Unidata/UCAR

NetCDF Workshop
July 25 – 26, 2011

Why Change Our Processes?

● To better cope with multiple engineers working
on the code at the same time.

● To provide better visibility to outside
stakeholders who want to follow our progress
more closely.

● To (hopefully) improve quality of product, and
productivity of engineers.

Switch to Subversion

● Historically netCDF-C/Fortran/C++ used cvs, a
revision control system from the last Ice Age.

● We switch to subversion due to the fact that it is
just like cvs but without the annoying parts.

● Our repository is available (read-only) for all:

http://svn.unidata.ucar.edu/repos/netcdf/trunk/
● This is what is made into the daily snapshot

each night around midnight (if it passes a
distcheck test on our main machine).

Documentation Issues

● We are currently using venerable texinfo
system, developed in pre-web days (though
capable of web output).

● Texinfo is a non-WYSIWYG editing format that
produces multiple outputs (postscript, html, info,
etc.)

● The documentation is separate from the code,
and there is no checking between
documentation and code for mistakes.

● Man pages are separate from the other
documentation

More Documentation Issues
● There is no internal documentation (only the

public APIs are documented).
● Some repetition between C and Fortran

manuals.
● We don't have any diagrams or pictures in the

documentation – text only!
● Web output looked old-fashioned back in 2004

when we started using texinfo.
● Complex build required.
● Requires that editor of documentation know

where it is, and about texinfo.

Some Documentation Requirement
Relaxations

● HTML documentation is the only required
output format.

● Fortran users are going to have to read the C
manual sometimes (but we can make sure it's
understandable to non-native C speakers).

Advantages of Doxygen

● Eliminates separate man page documentation.
● Puts documentation near code.
● More intuitive for programmers to use.
● Checking of function names and parameters

when documentation is generated.
● Easily enables internal documentation.
● Good support for images.
● Automatic hyperlinking.
● Access to the code itself in documentation.

More Advantages to Doxygen

● Familiar to most programmers (compatible with
javadoc).

● Nice looking output.
● Base tool (doxygen) much more widely installed

than old texinfo system.
● Much simpler documentation generation

process for netCDF build system.
● Each function gets linking man page.

Some Disadvantages with Doxygen

● Clutters up code. (Can we really complain
about comments as clutter?)

● Some code-neutral things, like position of
function in file, now become significant for
developers.

● Doxygen makes old-fashioned code-reading
less nice.

WARNING: ADVANCE PREVIEW!

● The final documentation may have a different
appearance, based on sytlesheet and other
visual changes.

● Organization of sections under construction.
● Doxygen conversion is mostly complete for

netCDF Tutorial, Installation Guide, User
Guide, and C Reference Manual. Only the
documentation of the tools
(ncdump/ncgen/nccopy) lags behind.

Things to Note

● Examples are nice-looking and documented
functions are hyperlinked.

● Common parameter explanations are
centralized and hyperlinked.

● Error codes are hyperlinked.
● Netcdf.h file becomes useful as documentation.

Remaining Documentation
Challenges

● Man pages look pretty poor at this point.
● The documentation process tends to highlight

“spills” in the code that need to be cleaned up.
● Non-book based reorganization of the material

is more necessary than I first thought.

What Will be In 4.2 Release

● The C API and other converted manuals will be
ready for the 4.2 release in some reasonable
form.

● The tools may maintain their own man page
documentation for the 4.2. release until I figure
out how to get doxygen to do better man pages
for me.

Using Jira
● We are heavily using the Jira tool to track our

work.
● Jira (along with associate tools) provides lots of

support for agile programming methodologies.
● We are so expert at agile programming that we

don't know any of these methodologies. So we
are learning the jargon.

Project Summary Page

● Take a look at netCDF-C summary page for
information about what we are doing:

http://www.unidata.ucar.edu/jira/browse/NCF

http://www.unidata.ucar.edu/jira/browse/NCF

Notes About Jira Use

● We are still adding lots of issues from previous
planning documents.

●

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

