HET
o
LnetCDF

python

netcdf4-python: A
python interface to the
netcdf C library

Jeff Whitaker
NOAA Earth System Research Lab
<jeffrey.s.whitaker@noaa.gov>

What is Python?

* An interpreted, dynamic, all-purpose high-
level programming language.

* Can be used ..
— As a replacement for matlab, IDL for analysis.

— To build GUI and web apps.

— As a higher-level “glue” language to build
interfaces to Fortran/C code.

Why Python?

e |t's free!
e |t's fun! (easy to learn, “fits your brain”)

e Has great scientific library support (data
formats, algorithms, plotting, you name it)

* A general purpose language (what you learn is
transferable to other domains)

* Easy to interface fortran/C if you need speed
or want to leverage legacy code.

Prerequistes

Python 2.5 or later (python 2.7 recommended)
Numpy array processing module from http://numpy.scipy.org.
netCDF/HDFS5 C libraries.

netcdf4-python from http://netcdf4-python.googlecode.com.

— PyNIO and Scientific.|IO modules are similar, without advanced
netcdf-4 features.

Optional but recommended:
— Matplotlib (http://matplotlib.sf.net) for plotting.
— Scipy (http://scipy.org) for common algorithms.

Enthought Python distro includes numpy, scipy, matplotlib
and netcdf4-python (free for academic use only, others SS).

netCDF Dataset object

>>> import netCDF4 # import module

>>> nc = netCDF4.Dataset(‘test.nc’,’'w’,format='NETCDF4’')
>>> print nc.file_ format

NETCDF4

>>> nc.close()

APl is similar to PyNIO or Scientific.lO.NetCDFFile.

* Dataset object contains dimensions, variables
and groups (stored as dictionary attributes).

* Top level group is the Dataset object itself.

Dimensions

>>> nc = netCDF4.Dataset(‘test.nc’,’a’) # re-open in ‘append’ mode
>>> lat dim = nc.createDimension(‘lat’,73)

>>> lon_dim = nc.createDimension(‘lon’,b144)

>>> time_dim = nc.createDimension(‘time’,None) # unlimited dim
>>> print nc.dimensions

OrderedDict ([('lat’', <netCDF4.Dimension object at 0x102711b50>),
('lon', <netCDF4.Dimension object at 0x102711b90>), ('time'’,
<netCDF4.Dimension object at 0x102711bd0>)])

>>> print len(lon_dim)

144

>>> print time _dim.isunlimited()
True

e Setting dimension size to 0 or None makes it unlimited.

e |ffile format="NETCDF4’, multiple dimensions can be
unlimited.

Variables

>>> import numpy as np # import numpy module

>>> mslp = nc.createVariable(’‘mslp’,np.float32,
(‘time’,‘lat’,’lon’))

>>> mslp.standard name = ‘air pressure_at_ sea level’

>>> print mslp.dimensions, mslp.shape, mslp.dtype, mslp.ndim
(‘time’,’'lat’,’lon’) (0,73,144) float32 3

e Data type specified by numpy type (float, int, float32, int16
etc).

e Iffile_format="NETCDF4’, multiple dimensions can be
unlimited.

e Attributes created by assigning values to Variable instances.

* Variable compression and chunk sizes may be specified by
keywords in createVariable.

» Useful attributes include: shape, dimensions, dtype, ndim.

Writing data

>>> print data_arr.shape # 6 grids of pressure data
(6,73,144)

>>> mslp = data_arr # append along unlim dim

>>> print mslp.shape

(6,73,144)

>>> data_out = mslp[::2,lats>0,:] # every other time in North. Hem.
>>> print data_out.shape
(3,36,144)

e Just treat Variable object like a numpy array and
assign data it.

* Variables automatically grow along unlimited
dims.

* To retrieve data, just slice the Variable object.

Bells and whistles

Conversion of time values to dates.
Multi-file aggregation.

Compression.

Groups (think filesystem directories).
Advanced data types:

— Compound variables.

— Variable-length arrays/strings.

Dealing with time

>>> from netCDF4 import date2num, num2date

>>> from datetime import datetime

>>> time_units = ‘hours since 0001-01-01 00:00:00.0°

>>> d = datetime(2011,7,26,12); print date

2011-07-26 12:00:00

>>> print date2num(d,units=time_units,calendar=‘gregorian’)
17624292.0

>>> print num2date(t,units=time_ units,calendar=‘gregorian’)
2011-07-26 12:00:00

>>> print num2date(t,units=time_units,calendar=‘julian’)
2011-07-13 12:00:00

Dealing with time coords has always been a PITA.
date2num and num2date functions here to help.
Supports many different calendars.

Can handle arrays of date, time values.

Multi-file aggregation

>>> from netCDF4 import MFDataset
>>> nc = MFDataset (‘/datasets/wind _195*.nc’)

e Uses file globbing to patch together all the files
for the 1950’s. Appears as one big dataset.

* Limitations:
— Can only handle NETCDF3, NETCDF4 _CLASSIC files.
— Only can aggregate along unlimited dimension.

— Slower than opening and reading files individually.

— netcdf-java provides more advanced aggregation
capabilities (via ncml).

Compression

>>> mslp = nc.createVariable(‘mslp’,np.float32,
(‘time’,’lat’,’lon’)) # no compression

>>> mslp = nc.createVariable(‘mslp’,np.float32,
(‘time’,‘lat’,’lon’),zlib=True) # ‘lossless’ zlib compression
>>> mslp = nc.createVariable(’‘mslp’,np.float32,
(‘time’,‘’lat’,’lon’), zlib=True,

least _signficant digit=1) # “lossy” zlib compression

e zlib=True turns on zlib compression (with shuffle
filter).
* |least_significant_digit=1 truncates the data after

the 15t decimal place. Can result in much smaller
files.

Recap

Python/numpy is a excellent matlab replacement.

netcdf4-python exposes almost all of the netcdf-4
C lib to python in a nice OO interface.

Would be great to incorporate some of the
features found in netcdf-java (such as
aggregation) in the future!

Downloads, docs, issue tracker
http://netcdf4-python.googlecode.com

Questions
<jeffrey.s.whitaker@noaa.gov>

