Using Unidata's Integrated Data Viewer (IDV) in Geoscience Research and Education

Yuan Ho Unidata Program Center Boulder, CO

Overview

What is the IDV?
Why use the IDV?
Who uses the IDV?
Examples
What's up next for the IDV?
Where do I download the IDV?

What is the IDV?

- Visualization and analysis tool for geoscience data
- Freely available Java[™] framework and application
- Integrated 2D/3D displays of a wide range of data
 - wide range of data
- Built on VisAD library

Thunderstorm simulation

Sea-level Pressure and Upper-level Jet

Vertical cross section

Upper-mantle convection

unidata

NO₂ concentration

CHGZ Reflectivity 3D Radar Sweep View 2006-07-15 12:03:192

255

1052

45

e î

Model simulation of wind, isentropic potential vorticity and low level moisture flow over the Great Salt Lake basin

Unique IDV Features

- Interactive probes for dataset exploration
 - Parameter readouts
 - Vertical profiles
 - Time/Height displays
 - Lat/Lon/Alt position
- Movie capture and playback
- Incorporation of educational materials
- User defined formulas
- Extensible framework
- Extensive use of network resources

	rol			
Parameter	Value	Level	Sampling	
т	21.6 celsius	850.0	Nearest Neighbor	
RH	32.0 %	Probe's	Nearest Neighbor	
absvor	missing 1/s	700.0	Weighted Average	
omega	.0704 Pa/s	Probe's	Weighted Average	1000
				-
Selector color	: red	•		
Location	n: Lat: 44.0	Long: .101.6	AH: 8000 0	
Location	Luc 41.0	Long, - to ho	110 00000	
Time	e: 2003-07-3	31 12:00:00Z		
C	ommands	Remove	Close	
ormula edito	r 10		-	- • ×
ormula edito Name: N				- • ×
ormula edito Name: []				- - ×
ormula edito Name: [] scription: []	n NDVI Normalized	Difference	vegetation index	
ormula edito Name: [] scription: []	NDVI Normalized	Difference	vegetation index	
ormula edito Name: [scription: [Category: [n DVI NDVI Normalized est formula	Difference s	vegetation index	
ormula edito Name: [scription:] Category: [n NDVI Normalized est formula	Difference s	vegetation index	
ormula edito Name: [scription:] Category: [NDVI Normalized est formula	Difference s	e vegetation index	
ormula edito Name: [scription: [Category: [Formula: (NDVI Normalized est formula NIR - R) / (Difference s NIR + R)	vegetation index	
ormula edito Name: 1 scription: 1 Category: 1 Formula: (NDVI Normalized est formula NIR - R) / (Difference s NIR + R)	vegetation index	
ormula edito Name: [scription: [Category: [Formula: [Add	NDVI Normalized est formula NIR - R) / (formula	Difference s NIR + R) Canc	el Help	
ormula edito Name: [scription:] Category: [Formula:] Add	NDVI Normalized est formula NIR - R) / (formula	Difference s NIR + R) Canc	el Help	
ormula edito Name: [scription: [Category: [Formula: [Add	NDVI Normalized est formula NIR - R) / (formula	Difference s NIR + R)	el Help	
ormula edito Name: [scription: [Category: [Formula: [Add	NDVI Normalized est formula NIR - R) / (formula	Difference s NIR + R)	el Help	

unidata

Web enabled features

- XML Configuration
 XML Persistence
 Integrated HTML Viewer
 Use of Java Web Start
 Real-time
 - collaboration

Web Enabled Features Client/Server Data Access

- Access data from DODS/ OPeNDAP, ADDE or WMS servers, as well as local files, HTTP and FTP
- Allows subsetting of large datasets
- Can use THREDDS catalogs of data holdings indexed in digital libraries (e.g. DLESE) for discovery and usage metadata

Web Enabled Features XML Configuration

- IDV uses XML to configure the user experience
- Configuration files can be local or distributed across one or more web servers
- Offers flexibility to adapt the interface to different:
 - learners
 - tasks
 - data sets
 - content areas

Web Enabled Features XML Persistence

- State of the application (loaded data sources and data depictions) can be saved in XML "bundles"
- Bundles can be loaded at startup or imported on-the-fly
- Displays can be annotated and these can be saved in the bundle as explanations
- Bundles can be distributed around the Internet (on web servers or e-mail attachments)

Who uses the IDV?

Atmospheric science students and faculty at Unidata institutions
Researchers
Weather enthusiasts
Oceanographers
Geophysicists

Today's Weather

Today's Weather

Why use the IDV?

- It's Free!
- Easy to install
 - Download from Web
 - Runs on most computers
- Easy data access
 - Remote servers (e.g., Unidata, NCDC) or local disk
- Versatile data interaction
 - 3D views of 3D data!
 - Probes to slice and dice
 - User defined formulas
- Bundles for quick access to data and displays
- Excellent user support
 - Integrated documentation
 - Unidata for qualified users
 - IDV community for others

IDV Benefits

In Classroom:

- More sophisticated presentation of concepts with real data
- Better prepares students entering the atmospheric career field
- In Research:
 - Easy data accessibility
 - High level of interaction with data
 - Platform independence allows for real-time collaboration between researchers

Supported Data Sources

Data Types:

- Gridded data
- Satellite imagery
- Radar data
- Point observations
- Balloon soundings
- NOAA Profiler Network winds
- GIS data
- Quick Time movies
- Web Cams

- Supported Formats:
 - netCDF
 - GRIB
 - ADDE
 - Vis5D
 - KML (Google Earth)
- Access Methods:
 - Local files
 - HTTP
 - ADDE and TDS servers

ADDE = Abstract Data Distribution Environment TDS (THREDDS) = Thematic Realtime Environmental Distributed Data Services

Educational Modules

- Project to develop educational modules to showcase features of IDV.
- PIs: Brian J. Etherton, Shelley O. Holmberg (UNC-Charlotte), Jeff Weber (Unidata)

Educational modules:

- What climatological factors were present in the 2005 Tropical Cyclone season to force the most active season on record?
- Why was Hurricane Katrina so destructive?
- How did Hurricane Wilma become the most intense hurricane in the Atlantic Basin?

"IDV Perspective: Climatology of the 2005 Hurricane Season" presented by Shelly at 2007 AMS Annual Meeting.

Comparison of 2005 season parameters to 30 year average. Data sources: SST (NCDC Extended Reconstructed Global SST); wind shear and specific humidity (NCEP/NCAR Reanalysis monthly mean pressure level data).

unidata

The Visual Geophysical Exploration Environment (VGEE) The VGEE is an integrated framework in which students use authentic data and tools to investigate a contemporary

scientific issue It includes:

A learner-centered interface to the IDV
Concept models that support physical insight
A curriculum to guide inquiry
A catalog of data and services to use data

🖆 #1 skewt Ad3 model

Memory: 62.55/104.82 MB (59%) Latitude: 48.1 Longitude: -119.4 Altitude: -520.2

IDV in LEAD

LEAD Visualization Tool:

- WRF output from LEAD workflow simulations
- Initial and boundary conditions for workflow
- Compare results to observations

LEAD-To-LEARN modules:

- Bundles associated with on-line modules
- Support inquiry based learning

Lake Effect Snow Module

IDV in Field Projects

- Used to plot realtime aircraft tracks, radar, dropsondes, satellite and model data in operations center.
- Project specific customization
 - Specialized maps, locations, color tables
 - Specialized code for new functionality
- Support for real-time streaming data and remote access to additional datasets
- Post project analysis:
 - Access data directly from NCAR Community Data Portal or download and use locally
 - Share remote datasets and views through bundles
- Visualization tool in the proposed Virtual Operations Center (VOC)

RICO: C130 track, SPOL radar and satellite

T-REX: G-V tracks and dropsondes

Customized IDV: GEON-IDV

- GEON is building cyberinfrastructure to allow seamless data and tool interoperability for the geosciences.
- The GEON-IDV is an extension of the Unidata IDV
 - Supports 2 and 3D displays of subsurface phenomena
 - Uses plug-in facility to customize the user interface \bullet and add features
 - Additional features include \bullet GPS velocity vectors, earthquake focal mechanisms, ray path traces.

Yellowstone Geophiscs: Earthquakes and tomography by Univ. Utah; topography from USGS; geology map image provided by Robert L. Christiansentens (UNAVCO)

Mt. St. Helens seismicity,

Customized IDV: TC-IDV

- TC-IDV is a customized version of IDV for typhoon tracking and analysis
- Being developed for Shanghai Typhoon Institute (STI)
- Access to database of storm tracks and forecasts
- Can be combined with satellite and model data

What's Up Next for IDV?

- Support for ensemble grids and diagnostics
- New time handling paradigm to allow data selection based on existing displayed data
- Integrate the new RAMADDA collection services into the choosers (e.g., radar server).
- New Displays better charting capabilities, meteorograms

For more information

IDV Homepage:

- http://www.unidata.ucar.edu/software/idv
- Download IDV package:
 - http://www.unidata.ucar.edu/downloads/idv/index.jspI

DV Support

• Support-idv@unidata.ucar.edu

McIDAS-V

- Next generation of McIDAS will be based on VisAD and IDV
 Goal is to provide data visualization and manipulation tools for
 - multi-spectral and hyper-spectral researchers and algorithm developers
- HYDRA like capabilities (BAMS, Rink, et al, Feb 2007)

Hyperspectral slicing using AIRS, MODIS and Calypso data in McIDAS-V (courtesy Tom Rink, SSEC)

IDV Features

- Integrated displays of a variety of data types
- Support for a variety data access methods
- Multiple display types
- Interactive probes
- User defined formulas
- Bundling of user preferences
- Easy configuration
- Integrated documentation
- Plug-in facility for customization

Model simulation of wind, isentropic potential vorticity and low level moisture flow over the Great Salt Lake basin

32nd Annual Northeastern Storm Conference March 9-11, 2007

IDV Community of Users

Universities

- Education
- Research (LEAD, GEON)
- UCAR (CGD, SCD, RAP, EOL, COMET)
- Government (NTSB, NCDC, NWS, NGDC, USGS, EPA)
- Military (NUWC, Air Force/ABL)
- Private Industry
- International (Gov of Macau, Norwegian Met Institute)

IDV for Post Field Analysis

- Access data directly from NCAR Community Data Portal or download and use locally
- Share remote datasets and views through bundles

