Unidata Providing data services, tools, & cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, & broaden participation

## NetCDF Data Model Issues

### Russ Rew, UCAR Unidata NetCDF 2010 Workshop 2010-10-25







#### The netCDF classic data model



• Character arrays for text

#### The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named subgroups, user-defined types, variables, dimensions, and attributes. Variables also have attributes. Variables may share dimensions, indicating a common grid. One or more dimensions may be of unlimited length.



#### NetCDF and HDF5 Data Models

- The netCDF classic data model: simple and flat
  - Dimensions
  - Variables
  - Attributes
- The netCDF enhanced data model added
  - More primitive types
  - Multiple unlimited dimensions
  - Hierarchical groups
  - User-defined data types
- The HDF5 data model has even more features
  - Non-hierarchical groups
  - User-defined primitive data types
  - Hard- and soft-links (providing multiple names for Groups, variables)
  - References (pointers to objects and data regions in a file)
  - Attributes attached to user-defined types

#### The Enhanced NetCDF Data Model

- Additions to classic netCDF data model
- Still a subset of HDF5 data model (*\*with shared dimensions workaround*)
- Made possible by adding a few things to HDF5 so netCDF classic data model could fit within it
- Criteria for additions: handling identified classic limitations, simplicity
- Is netCDF enhanced data model the right balance of simplicity and power?



#### Evaluation: netCDF enhanced data model

#### Strengths

- Simpler than HDF5, with similar representational power
- Compatible with existing data, software, conventions
- Efficient reference implementation
- Orthogonal features permit incremental adoption

## Limitations

- More complex than classic data model
- More challenging to develop general software tools
- Comprehensive conventions still lacking
- Not yet widely adopted

### Why Is Adoption of Enhanced Data Model Slow?

- Combination of classic data model with netCDF-4 adequate for many uses
  - Only requires relinking instead of modifying software
  - Performance benefits: compression, multi-dimensional chunking, larger variables
- Data using enhanced data model features not common yet
- Best practices and conventions not yet developed for enhanced data model
- NetCDF-4 enhanced data model not endorsed as a standard yet
- Developer perceptions
  - Must upgrade to features of enhanced model all at once
  - Handling potentially infinite number of user-defined types is difficult

#### NetCDF-4 classic-model: a transitional format



- Compatible with existing applications
- Simplest data model and API
- Uses classic API for compatibility
- Uses netCDF-4/HDF5 storage for compression, chunking, performance
- To use, just recompile, relink
- Not compatible with some many existing applications
- Enhanced data model and API more complex and powerful

# Experience so far: Adapting to netCDF-4

| Features                                              | NCAR's<br>NCL | NetCDF<br>Operator<br>s (NCO) | netCDF-<br>Java | Python<br>API | CCFE's C++<br>API for<br>netCDF-4 | ncdump<br>ncgen<br>nccopy |
|-------------------------------------------------------|---------------|-------------------------------|-----------------|---------------|-----------------------------------|---------------------------|
| Performance<br>features:<br>compression,<br>chunking, | yes           | yes                           | read-<br>only   | yes           | yes                               | yes                       |
| New primitive<br>types                                | yes           | yes                           | read-<br>only   | yes           | yes                               | yes                       |
| Multiple<br>unlimited<br>dimensions                   | read-<br>only | read-<br>only                 | read-<br>only   | yes           | yes                               | yes                       |
| Groups                                                | not yet       | not yet                       | read-<br>only   | yes           | yes                               | yes                       |
| Compound<br>types, variable-<br>length types          | not yet       | not yet                       | read-<br>only   | flat          | yes                               | yes                       |

# Experience developing nccopy utility

- Shows developing generic netCDF-4 software is practical
- Provides measure of difficulty of developing for enhanced data model
  - Classic data model: 500 lines of C
  - Enhanced data model: 1000 lines of C
- Shows usefulness of higher-level APIs for tool developers
  - Iterator APIs for uniform data access in nccopy
  - Comparing two values of a user-defined type for equality
  - Getting group IDs of all descendents of a group

## **Recommendation for Developers**

- Add support for netCDF enhanced data model features incrementally
  - new primitive types: unsigned numeric types and strings
  - opaque types (easy, no nesting)
  - enumeration types (easy, no nesting)
  - nested Groups (simple recursion or Group iterator)
  - compound types with only primitive members
  - variable-length arrays of primitives
  - compound types with members of user-defined type
  - variable-length arrays of user-defined types

# Benefits and Costs of Adapting Tools to Enhanced Model

- Benefits:
  - NetCDF-4's enhanced data model adds representational power
  - Data providers can use more natural representation of complex data semantics
  - More natural conventions become possible
  - Generality provides improved interoperability with other formats, with access to more types of data through netCDF-like APIs
- Costs:
  - Development resources, opportunity costs, risk of adding functionality not proven useful yet

# Game of chicken: Who goes first?



- Data producers
  - Waiting until netCDF enhanced data model features are supported by more software, development of conventions
- Developers
  - Waiting for netCDF data that requires enhanced model and for development of conventions
- Convention creators
  - Waiting for data providers and software developers to identify needs for new conventions based on usage experience
- Result: "chicken-and-egg logjam"
  - Delays effective use of advances in scientific data models for large and complex collections

# Concluding remarks

- Serious use of netCDF-4 enhanced data model just beginning
- Future adjustments to model, if any, will be made by addition, not modification or deletion of existing features
- Will one data model "win" the hearts and minds of data producers, developers, users?
  - netCDF-4 classic model, netCDF-4 enhanced model, HDF5 model, or something else?