
NetCDF Data Model Issues

Russ Rew, UCAR Unidata
NetCDF 2010 Workshop

2010-10-25

The netCDF classic data model

Attribute
 name: String
 type: primitive
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: primitive
 values: type[…]

NetCDF File

Dimension
 name: String
 length: int

0..* 0..* 0..*

0..* 0..*

  A netCDF File has
  Variables
  Dimensions
  Attributes

  Variables have
  Name, shape, type, values
  Associated attributes

  Dimensions have
  Name, length
  One dimension may be dynamic

  Variables may share dimensions
  Indicates common grid
  Scalar variables have no

dimensions
  Primitive types

  Numeric: byte. short, int, float,
double

  Character arrays for text

The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named
subgroups, user-defined types, variables, dimensions, and attributes. Variables also

have attributes. Variables may share dimensions, indicating a common grid. One or
more dimensions may be of unlimited length. 	

Dimension
 name: String
 length: int

Attribute
 name: String
 type: DataType
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: DataType
 values: type[…]

Group
 name: String

File

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.	

DataType

PrimitiveType
char
byte

short
int

float
double

unsigned byte
unsigned short

unsigned int
int64

unsigned int64
string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

0..*

1..*

0..*

0..*

0..*

0..*

0..*
0..*

NetCDF and HDF5 Data Models

  The netCDF classic data model: simple and flat
  Dimensions
  Variables
  Attributes

  The netCDF enhanced data model added
  More primitive types
  Multiple unlimited dimensions
  Hierarchical groups
  User-defined data types

  The HDF5 data model has even more features
  Non-hierarchical groups
  User-defined primitive data types
  Hard- and soft-links (providing multiple names for Groups, variables)
  References (pointers to objects and data regions in a file)
  Attributes attached to user-defined types

The Enhanced NetCDF Data Model

  Additions to classic netCDF data model
  Still a subset of HDF5 data model (*with shared dimensions workaround)
  Made possible by adding a few things to HDF5 so netCDF classic

data model could fit within it
  Criteria for additions: handling identified classic limitations, simplicity
  Is netCDF enhanced data model the right balance of simplicity and

power?

HDF5

netCDF enhanced

netCDF classic

Evaluation: netCDF enhanced data model

  Strengths
  Simpler than HDF5,

with similar
representational power

  Compatible with
existing data,
software, conventions

  Efficient reference
implementation

  Orthogonal features
permit incremental
adoption

  Limitations
  More complex than

classic data model
  More challenging to

develop general
software tools

  Comprehensive
conventions still
lacking

  Not yet widely adopted

Why Is Adoption of Enhanced Data Model Slow?

  Combination of classic data model with netCDF-4
adequate for many uses
  Only requires relinking instead of modifying software
  Performance benefits: compression, multi-dimensional

chunking, larger variables
  Data using enhanced data model features not

common yet
  Best practices and conventions not yet developed for

enhanced data model
  NetCDF-4 enhanced data model not endorsed as a

standard yet
  Developer perceptions

  Must upgrade to features of enhanced model all at once
  Handling potentially infinite number of user-defined types is

difficult

NetCDF-4 classic-model: a transitional format

netCDF-3
classic model

netCDF-4
classic model

netCDF-4
enhanced model

•  Compatible with existing
applications

•  Simplest data model and API

•  Not compatible with some many
existing applications

•  Enhanced data model and API
more complex and powerful

•  Uses classic API for compatibility

•  Uses netCDF-4/HDF5 storage for
compression, chunking, performance

•  To use, just recompile, relink

Experience so far: Adapting to netCDF-4

Features NCAR’s
NCL

NetCDF
Operator
s (NCO)

netCDF-
Java

Python
API

CCFE’s C++
API for

netCDF-4

ncdump
ncgen
nccopy

Performance
features:
compression,
chunking, …

New primitive
types

Multiple
unlimited
dimensions

Groups

Compound
types, variable-
length types

Experience developing nccopy utility

•  Shows developing generic netCDF-4 software is practical
•  Provides measure of difficulty of developing for enhanced

data model
–  Classic data model: 500 lines of C
–  Enhanced data model: 1000 lines of C

•  Shows usefulness of higher-level APIs for tool developers
–  Iterator APIs for uniform data access in nccopy
–  Comparing two values of a user-defined type for equality
–  Getting group IDs of all descendents of a group

Recommendation for Developers

•  Add support for netCDF enhanced data model
features incrementally
–  new primitive types: unsigned numeric types and strings
–  opaque types (easy, no nesting)
–  enumeration types (easy, no nesting)
–  nested Groups (simple recursion or Group iterator)
–  compound types with only primitive members
–  variable-length arrays of primitives
–  compound types with members of user-defined type
–  variable-length arrays of user-defined types

Benefits and Costs of Adapting Tools to
Enhanced Model

•  Benefits:
– NetCDF-4’s enhanced data model adds

representational power
– Data providers can use more natural representation of

complex data semantics
– More natural conventions become possible
– Generality provides improved interoperability with other

formats, with access to more types of data through
netCDF-like APIs

•  Costs:
– Development resources, opportunity costs, risk of

adding functionality not proven useful yet

Game of chicken: Who goes first?

•  Data producers

–  Waiting until netCDF enhanced data
model features are supported by more
software, development of conventions

•  Developers

–  Waiting for netCDF data that requires
enhanced model and for development of
conventions

•  Convention creators

–  Waiting for data providers and software
developers to identify needs for new
conventions based on usage experience

•  Result: “chicken-and-egg logjam”
–  Delays effective use of advances in scientific

data models for large and complex
collections

 Concluding remarks

  Serious use of netCDF-4 enhanced data
model just beginning

  Future adjustments to model, if any, will be
made by addition, not modification or deletion
of existing features

  Will one data model “win” the hearts and
minds of data producers, developers, users?
  netCDF-4 classic model, netCDF-4 enhanced model, HDF5

model, or something else?

