
7/23/07 1

What NetCDF users should
know about HDF5?

Elena Pourmal
The HDF Group

July 20, 2007

7/23/07 2

Outline

• The HDF Group and HDF software
• HDF5 Data Model
• Using HDF5 tools to work with NetCDF-4 programs

files
• Performance issues

Chunking
Variable-length datatypes
Parallel performance

• Crash proofing in HDF5

7/23/07 3

The HDF Group

• Non-for-profit company with a mission to sustain and develop
HDF technology affiliated with University of Illinois

• Spun-off NCSA University of Illinois in July 2006
• Located at the U of I Campus South Research Park
• 17 team members, 5 graduate and undergraduate students
• Owns IP for HDF fie format and software
• Funded by NASA, DOE, others

7/23/07 4

HDF5 file format and I/O library

• General
 simple data model

• Flexible
 store data of diverse origins, sizes, types
 supports complex data structures

• Portable
 available for many operating systems and machines

• Scalable
 works in high end computing environments
 accommodates date of any size or multiplicity

• Efficient
 fast access, including parallel i/o
 stores big data efficiently

7/23/07 5

HDF5 file format and I/O library

• File format
Complex

 Objects headers
 Raw data
 B-trees
 Local and Global heaps
 etc

• C Library
500+ APIs
C++, Fortran90 and Java wrappers
High-level APIs (images, tables, packets)

7/23/07 6

StorageStorage

File on parallelFile on parallel
file systemfile systemFileFile

Split metadata Split metadata
and raw data filesand raw data files

User-definedUser-defined
devicedevice

?? Across the networkAcross the network
or to/from anotheror to/from another

application or libraryapplication or library
HDF5 formatHDF5 format

HDF5HDF5 data model & API data model & API

Apps: simulation, visualization, remote sensing…
Examples: Thermonuclear simulations

Product modeling
Data mining tools

Visualization tools
Climate models

Common application-specific data models

HDF5 virtual file layer (I/O drivers)HDF5 virtual file layer (I/O drivers)

MPI I/OMPI I/OSplit FilesSplit FilesSec2Sec2 CustomCustom StreamStream
HDF5 serial &HDF5 serial &

parallel I/Oparallel I/O

NetCDF-4 SAF hdf5mesh HDF-EOSIDLappl-specificappl-specific
APIs

UnidataLANL LLNL, SNL Grids COTS NASA

7/23/07 7

HDF5 file format and I/O library

For NetCDF-4 users HDF5 complexity is hidden behind
NetCDF-4 APIs

7/23/07 8

HDF5 Tools

• Command line utilities
http://www.hdfgroup.org/hdf5tools.html
• Readers

h5dump
h5ls

• Writers
h5repack
h5copy
h5import

• Miscellaneous
h5diff, h5repart, h5mkgrp, h5stat, h5debug, h5jam/h5unjam

• Converters
h52gif, gif2h5, h4toh5, h5toh4

• HDFView (Java browser and editor)

7/23/07 9

Other HDF5 Tools

 HDF Explorer
Windows only, works with NetCDF-4 files

http://www.space-research.org/
 PyTables
 IDL
 Matlab
 Labview
 Mathematica
 See

 http://www.hdfgroup.org/tools5app.html

7/23/07 10

HDF Information

• HDF Information Center
http://hdfgroup.org

• HDF Help email address
help@hdfgroup.org

• HDF users mailing lists
news@hdfgroup.org
hdf-forum@hdfgroup.org

7/23/07 11

NetCDF and HDF5 terminology

DataspaceDimensions

AttributeAttribute

Dimension scaleCoordinate variable

DatasetVariable

HDF5 fileDataset

HDF5NetCDF

7/23/07 12

Mesh Example, in HDFView

7/23/07 13

HDF5 Data Model

7/23/07 14

HDF5 data model

• HDF5 file – container for scientific data
• Primary Objects

• Groups
• Datasets

• Additional ways to organize data
• Attributes
• Sharable objects
• Storage and access properties

NetCDF-4 builds from these parts.

NetCDF-4 builds from these parts.

7/23/07 15

HDF5 Dataset

DataMetadata
DataspaceDataspace

3

RankRank

Dim_2 = 5
Dim_1 = 4

DimensionsDimensions

time = 32.4

pressure = 987

temp = 56

AttributesAttributes

chunked
compressed

Dim_3 = 7

Storage infoStorage info

IEEE 32-bit float
DatatypeDatatype

checksum

7/23/07 16

Datatypes

• HDF5 atomic types
 normal integer & float
 user-definable (e.g. 13-bit integer)
 variable length types (e.g. strings, ragged arrays)
 pointers - references to objects/dataset regions
 enumeration - names mapped to integers
 array
 opaque

• HDF5 compound types
 Comparable to C structs
 Members can be atomic or compound types
 No restriction on comlexity

7/23/07 17

RecordRecord

int8int8 int4int4 int16int16 2x3x2 array of float322x3x2 array of float32
Datatype:Datatype:

HDF5 dataset: array of records

Dimensionality: 5 x 3Dimensionality: 5 x 3

3

5

7/23/07 18

Groups

• A mechanism for collections
of related objects

• Every file starts with a root
group

• Similar to UNIX
directories

• Can have attributes
• Objects are identified by
 a path e.g. /d/b, /t/a

“/”
t d

h

a b c a

7/23/07 19

Attributes

• Attribute – data of the form “name = value”, attached to
an object (group, dataset, named datatype)

• Operations scaled down versions of dataset operations
Not extendible
No compression
No partial I/O

• Optional
• Can be overwritten, deleted, added during the “life” of a

dataset
• Size under 64K in releases before HDF5 1.8.0

7/23/07 20

Using HDF5 tools with
NetCDF-4 programs and files

7/23/07 21

Example

• Create netCDF-4 file
• /Users/epourmal/Working/_NetCDF-4

• s.c creates simple_xy.nc (NetCDF3 file)
• sh5.c creates simple_xy_h5.nc (NetCDF4 file)
• Use h5cc script to compile both examples
• See contents simple_xy_h5.nc with ncdump and

h5dump
• Useful flags

 -h to print help menu
 -b to export data to binary file
 -H to display metadata information only

• HDF Explorer

7/23/07 22

NetCDF view: ncdump output

% ncdump -h simple_xy_h5.nc
netcdf simple_xy_h5 {
dimensions:
 x = 6 ;
 y = 12 ;
variables:
 int data(x, y) ;
data:
}

% h5dump -H simple_xy.nc
h5dump error: unable to open file "simple_xy.nc”
 This is NetCDF3 file, h5dump will not work

7/23/07 23

HDF5 view: h5dump output

% h5dump -H simple_xy_h5.nc
HDF5 "simple_xy_h5.nc" {
GROUP "/" {
 DATASET "data" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (6, 12) / (6, 12) }
 ATTRIBUTE "DIMENSION_LIST" {
 DATATYPE H5T_VLEN { H5T_REFERENCE}
 DATASPACE SIMPLE { (2) / (2) }
 }
 }
 DATASET "x" {
 DATATYPE H5T_IEEE_F32BE
 DATASPACE SIMPLE { (6) / (6) }
 …….
 }

7/23/07 24

HDF Explorer

7/23/07 25

HDF Explorer

7/23/07 26

Performance issues

7/23/07 27

Performance issues

• Choose appropriate HDF5 library features to organize
and access data in HDF5 files

• Three examples:
• Collective vs. Independent access in parallel HDF5

library
• Chunking
• Variable length data

7/23/07 28

Layers – parallel example

NetCDF-4 Application

Parallel computing system (Linux cluster)
Compute

node

I/O library (HDF5)

Parallel I/O library (MPI-I/O)

Parallel file system (GPFS)

Switch network/I/O servers

Compute
node

Compute
node

Compute
node

Disk architecture & layout of data on diskDisk architecture & layout of data on disk

I/O flows
through many
layers from
application to
disk.

7/23/07 29

h5perf

• An I/O performance measurement tool
• Test 3 File I/O API

• Posix I/O (open/write/read/close…)
• MPIO (MPI_File_{open,write,read.close})
• PHDF5

• H5Pset_fapl_mpio (using MPI-IO)
• H5Pset_fapl_mpiposix (using Posix I/O)

7/23/07 30

H5perf: Some features

• Check (-c) verify data correctness
• Added 2-D chunk patterns in v1.8

7/23/07 31

My PHDF5 Application I/O “inhales”

• If my application I/O performance is bad, what can I
do?
• Use larger I/O data sizes
• Independent vs Collective I/O
• Specific I/O system hints
• Parallel File System limits

7/23/07 32

Independent Vs Collective Access

• User reported Independent
data transfer was much
slower than the Collective
mode

• Data array was tall and thin:
230,000 rows by 6 columns

:
:

230,000 rows
:
:

7/23/07 33

4.12881.392.75180300

3.63528.152.29150000

3.11276.571.88122918

2.68108.201.0065536

1.8065.120.5032768

1.728.260.2516384

Collective (Sec.)Independent (Sec.)Data Size
(MB)

of Rows

Independent vs. Collective write

(6 processes, IBM p-690, AIX, GPFS)

7/23/07 34

Independent vs Collective write
(6 processes, IBM p-690, AIX, GPFS)

Performance (non-contiguous)

0

100

200

300

400

500

600

700

800

900

1000

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Data space size (MB)

T
im

e
 (

s
)

Independent

Collective

7/23/07 35

1. A parallel version of NetCDF-3 from ANL/Northwestern
University/University of Chicago (PnetCDF)

2. HDF5 parallel library 1.6.5
3. NetCDF-4 beta1
4. For more details see

http://www.hdfgroup.uiuc.edu/papers/papers/ParallelPerf
ormance.pdf

Some performance results

7/23/07 36

Flash I/O Website http://flash.uchicago.edu/~zingale/flash_benchmark_io/

Robb Ross, etc.”Parallel NetCDF: A Scientific High-Performance I/O Interface

HDF5 and PnetCDF Performance Comparison

7/23/07 37

HDF5 and PnetCDF performance comparison

Bluesky: Power 4 uP: Power 5

Flash I/O Benchmark (Checkpoint files)

0

500

1000

1500

2000

2500

10 110 210 310

Number of Processors

M
B

/s

PnetCDF HDF5 independent

Flash I/O Benchmark (Checkpoint files)

0

10

20

30

40

50

60

10 60 110 160

Number of Processors

M
B

/s

PnetCDF HDF5 independent

7/23/07 38

HDF5 and PnetCDF performance comparison

Bluesky: Power 4 uP: Power 5

Flash I/O Benchmark (Checkpoint files)

0

10

20

30

40

50

60

10 60 110 160

Number of Processors

M
B

/s

PnetCDF HDF5 collective HDF5 independent

Flash I/O Benchmark (Checkpoint files)

0

500

1000

1500

2000

2500

10 110 210 310

Number of Processors

M
B

/s

PnetCDF HDF5 collective HDF5 independent

7/23/07 39

Parallel NetCDF-4 and PnetCDF

• Fixed problem size = 995 MB
• Performance of PnetCDF4 is close to PnetCDF

0
20
40
60
80

100
120
140
160

0 16 32 48 64 80 96 112 128 144

Number of processors

B
an

dw
id

th
 (M

B
/S

)
PNetCDF from ANL NetCDF4

7/23/07 40

HDF5 chunked dataset

•Dataset is partitioned into fixed-size chunks
•Data can be added along any dimension
•Compression is applied to each chunk
•Datatype conversion is applied to each chunk
•Chunking storage creates additional overhead in a file
•Do not use small chunks

7/23/07 41

Writing chunked dataset

C B
A

…………..

• Each chunk is written as a contiguous blob
• Chunks may be scattered all over the file
• Compression is performed when chunk is evicted from the chunk cache
• Other filters when data goes through filter pipeline (e.g. encryption)

AB C

C

File

Chunk cacheChunked dataset

Filter pipeline

7/23/07 42

Writing chunked datasets

Dataset_1 header
…………

Application memory

Metadata cache

Chunking B-tree nodes
Chunk cache

Default size is 1MB

• Size of chunk cache is set for file
• Each chunked dataset has its own chunk cache
• Chunk may be too big to fit into cache
• Memory may grow if application keeps opening datasets

Dataset_N header
…………

………

7/23/07 43

Partial I/O for chunked dataset

• Build list of chunks and loop through the list
• For each chunk:
• Bring chunk into memory
• Map selection in memory to selection in file
• Gather elements into conversion buffer and
 perform conversion
• Scatter elements back to the chunk
• Apply filters (compression) when chunk is
 flushed from chunk cache
For each element 3 memcopy performed

1 2

3 4

7/23/07 44

Partial I/O for chunked dataset

3

Application memory

memcopy

Application buffer

Chunk

Elements participated in I/O are gathered into corresponding chunk

7/23/07 45

Partial I/O for chunked dataset

3
Conversion buffer

Gather data

Scatter data
Application memory

Chunk cache

On eviction from cache chunk is compressed
and is written to the file

File Chunk

7/23/07 46

Chunking and selections

Great performance Poor performance

Selection coincides with a chunk Selection spans over all chunks

7/23/07 47

Things to remember about HDF5 chunking

Use appropriate chunk sizes
Make sure that cache is big enough to contain chunks

for partial I/O
Use hyperslab selections that are aligned with chunks
Memory may grow when application opens and

modifies a lot of chunked datasets

7/23/07 48

Variable length datasets and I/O

• Examples of variable-length data
• String

A[0] “the first string we want to write”
…………………………………
A[N-1] “the N-th string we want to write”

• Each element is a record of variable-length
A[0] (1,1,0,0,0,5,6,7,8,9) length of the first record is 10
A[1] (0,0,110,2005)
………………………..
A[N] (1,2,3,4,5,6,7,8,9,10,11,12,….,M) length of the N+1

record is M

7/23/07 49

Variable length datasets and I/O

• Variable length description in HDF5 application
typedef struct {
 size_t length;
 void *p;
}hvl_t;

• Base type can be any HDF5 type
H5Tvlen_create(base_type)

• ~ 20 bytes overhead for each element
• Raw data cannot be compressed

7/23/07 50

Variable length datasets and I/O

Global heapGlobal heap

Application bufferApplication buffer

Raw dataRaw data

Elements in application buffer point
to global heaps where actual data is
stored

Global heapGlobal heap

7/23/07 51

VL chunked dataset in a file

File

Dataset header

Chunking B-tree

Dataset chunksRaw data

7/23/07 52

Variable length datasets and I/O

• Hints
• Avoid closing/opening a file while writing VL datasets

• global heap information is lost
• global heaps may have unused space

• Avoid writing VL datasets interchangeably
• data from different datasets will is written to the same heap

• If maximum length of the record is known, use fixed-
length records and compression

7/23/07 53

Crash-proofing

7/23/07 54

Why crash proofing?

• HDF5 applications tend to run long times (sometimes
until system crashes)

• Application crash may leave HDF5 file in a corrupted
state

• Currently there is no way to recover data
• One of the main obstacles for productions codes that

use NetCDF-3 to move to NetCDF-4
• Funded by ASC project
• Prototype release is scheduled for the end of 2007

7/23/07 55

HDF5 Solution

• Journaling
• Modifications to HDF5 metadata are stored in an external

journal file
• HDF5 will be using asynchronous writes to the journal file

for efficiency
• Recovering after crash

• HDF5 recovery tool will replay the journal and apply all
metadata writes bringing HDF5 file to a consistent state

• Raw data will consist of data that made to disk
• Solution will be applicable for both sequential and parallel

modes

7/23/07 56

Thank you!

Questions ?

