CDM Point Feature Types
Draft Mar 17, 2008

As part of Unidata’s Common Data Model (CDM), we propose a categorization of scientific data into feature types, reflecting the data layout of existing scientific data formats, as an implementation strategy for providing data access and subsetting services.

In this paper we concentrate on the proposed one-dimensional point feature types, which are:
· Point feature: one or more parameters measured at one point in time and space 
· Station feature: a time-series of data points all at the same location, with varying time .
· Profile feature: a set of data points along a vertical line. 
· Station Profile feature: a time-series of profile features at a named location. 

· Trajectory feature: a set of data points along a 1D curve in time and space.
· Section feature:  a collection of profile features which originate along a trajectory. 
Point feature collections are collections of point feature types that have the same measured parameters. Some examples:

· Point collection: earthquake data, lightning data.

· Station collection: weather station data, fixed buoys.

· Profile collection. satellite profiles.

· Station Profile collection: profilers, balloon soundings.

· Trajectory collection: aircraft data, drifting buoys.
· Section collection: ship soundings.

A similar effort by Andrew Woolf et al as part of the Climate Science Modeling Language (CSML) proposes the following point feature types, which we compare to CDM feature types in the following table:
	CSML Feature Type
	CDM Feature Type

	PointFeature
	PointFeature

	PointSeriesFeature
	StationFeature

	TrajectoryFeature
	TrajectoryFeature

	PointCollectionFeature
	PointFeature collection at fixed time

	ProfileFeature
	ProfileFeature

	ProfileSeriesFeature
	StationProfileFeature at one location and fixed vertical levels

	RaggedProfileSeriesFeature
	StationProfileFeature at one location

	SectionFeature
	SectionFeature with fixed number of vertical levels

	RaggedSectionFeature
	SectionFeature


The main contribution of this paper is a compact notation for describing point features, called the nested table notation, which allows CDM and CSML feature types and other variations to be described and compared using a common notation. The nested table notation also reflects the connectivity of the feature types in a natural way.
As we will see, point feature data fit well into a relational data model, and so are good candidates for storage into a relational database. Each observation is a row, with the measured parameters comprising the columns. In part 2, we briefly compare the nested table notation with the relational data model.
1. Point Feature Table Notation
CSML suggests that collections of features are also features. We also note the pattern that complex feature types are built as collections of other features. We take the approach that all point feature types are arrangements of collections of PointFeatures (a set of measurements at the same point in space and time), distinguished by the geometry and topology of the collections. 

A structure is a set of data fields, similar to a struct in C, with each field having a name, data type, array shape, and optional attributes. A table is an ordered collection of structures, similar to a table in a relational database, where each structure is a row in the table. Rather than using the relational join operation to connect tables together, we will use a tree-structured data model by allowing nested tables.
In this paper, nested tables are an abstract data model for point features, independent of any implementation. However, there is a correspondence with the netCDF-Java implementation classes, and the Common Data Model. In the CDM data access layer, a Structure is a kind of Variable that contains other Variables which are stored physically close together on disk, so that it is efficient to read all the data for a Structure at the same time. Structures can be multidimensional and can contain other Structures. A Sequence is a one-dimensional Structure whose length is not known until the data is read from disk. A Sequence is typically nested inside another Structure, and the Sequence length varies. A table here is intended to represent both one-dimensional Structures of known length and Sequences.

CDM table notation expresses the data structures for point features in a way that reflects the data layout on disk, as well as the relationship of index space to coordinate space, which we call the connectedness of the feature type. The following are the CDM table notation rules, which we explain further in the examples below.
· A feature is represented as a structure.

· A table is a collection of structures of the same type. The size of the table may be fixed or variable length.
· A feature type is represented as nested tables of specific form.

· Both coordinates and data variables can be at any level of the nesting.

· A coordinate in an inner table is connected; a coordinate in the outermost table is unconnected.
· A constant coordinate can be factored out to the top level. This is logically joined to any nested table with the same dimension.
· A feature collection is an unconnected collection of a specific feature type.
The following are the canonical forms of each feature type:
PointFeature

A PointFeature is a collection of data variables collocated in time and space:

  structure {
    float lon;

    float lat;

    float z;

    float time;
    double data; // represents any number of data variables
  } pointFeature;

A PointFeature collection is a table of unconnected PointFeatures:

  table {
    float lon;

    float lat;

    float z;

    float time;
    double data;

  } pointFeature;

The CSML PointCollectionFeature is a PointFeature collection at a fixed time, denoted by factoring out the constant coordinate to the top level:
  float time;

  table {

    float lon;

    float lat;

    float z;

    double data;

  } CSMLpointCollectionFeature;
StationFeature
A StationFeature is a time series of PointFeatures at a named location. The inner table, called pointObs here, is connected in the coordinate it contains, namely time.

  structure {

    String name;

    float lon;

    float lat;

    float z;

    table {

      float time;
      double data;
    } pointObs; // connected in time
  } stationFeature; // time series of obs at fixed location

A StationFeature collection is a collection of StationFeature. It is unconnected on the coordinates in the outer table:

  table {

    String name;

    float lon;   // unconnected in space
    float lat;

    float z;

    table {

      float time;
      double data;
    } pointObs; // connected in time

  } stationFeature; 

ProfileFeature

A ProfileFeature is a set of PointFeatures along a vertical line. The inner table is connected in z and optionally time:
  structure {

    float lon;

    float lat;

    float time; // time could also be in inner table
    table {

      float z;
      double data;
    } pointObs; // connected in z

  } profileFeature; // vertical profile of obs at fixed x,y,t

A ProfileFeature collection is a collection of ProfileFeatures, unconnected on the coordinates in the outer table:
  table {

    float lon;

    float lat;

    float time; // time could also be in inner table

    table {

      float z;
      double data;
    } pointObs; // connected in z

  } profileFeature; // vertical profile of obs at fixed x,y,t

TrajectoryFeature

A TrajectoryFeature is a set of PointFeatures along a 1D curve in space. The inner table is connected in x,y,z and time:

  structure {

    table {

      float lon;

      float lat;

      float z;

      float time;
      double data;
    } pointObs; // connected in (x,y,z,time)
  } trajectoryFeature; // sampling along a trajectory

The TrajectoryFeature, has a connected inner table, to distinguish from a PointFeature collection which is unconnected, and looks like:
  table {
    float lon;

    float lat;

    float z;

    float time;
    double data;

  } pointFeature;

A TrajectoryFeature collection is a collection of TrajectoryFeature:

  table {

    table {

      float lon;

      float lat;

      float z;

      float time;
      double data;
    } pointObs; // connected in (x,y,z,time)

  } trajectoryFeature; // sampling along a trajectory
StationProfileFeature

A StationProfileFeature is a time series of ProfileFeatures at a named location. There are two inner tables, the innermost connected on z, the other connected in time.

  structure {

    String name;

    float lon;

    float lat;

    table {

      float time; // connected in time
      table {

        float z;
        double data;
      } pointObs; // connected in z

    } profileFeature;  // profile
  } stationProfileFeature; // time series of profiles at a station

We also have the case where there are multiple profiles inside each observation:
  structure {

    String name;

    float lon;

    float lat;

    table {

      float time; 
      table {

        float pressure;
        double data;
      } mandatoryLevels; 

      table {

        float geopot;
        double data;
      } geopotLevels; 

    } report;  
  } stationProfileFeature;
The CSML ProfileSeriesFeature has fixed z coordinates for all rows of the inner table. We denote by adding a z dimension of fixed length, placing the z coordinate at the top level, and putting a (z) dimension on the inner table. The inner table and the z coordinate is said to be joined on the z dimension.
  dimension z = 23;

  float z(z); // all on same z coord, connected in z
  structure {

    String name;

    float lon;

    float lat;

    table {

      float time; 
      table {

        double data;
      } pointObs(z); 

    } profileFeature;  

  } CSMLprofileSeriesFeature; 

SectionFeature

A SectionFeature is a set of ProfileFeatures along trajectory. There are two inner tables, the innermost connected on z, the other connected in lat, lon and time:

  structure {

    table {

      float lon; // connected x,y,t
      float lat;
      float time;
      table {

        float z;
        double data;
      } pointObs; // connected in z
    } profileFeature; // profile
  } sectionFeature; // profiles along a trajectory

The CSML SectionFeature has fixed z coordinates for all rows of the inner table. We again denote using a joined z dimension.
  dimension z = 11;

  float z(z); // all on same z coord, connected in z
  structure {

    table {

      float lon;

      float lat;
      float time;
      table {

        double data;
      } pointObs(z); 

    } profileFeature;
  } CSMLsectionFeature; 

If datasets can be presented in the canonical forms above, it should be possible to identify their feature types. Thus, in the CDM software stack:

· The IOSP reflects the physical data layout. 

· The FeatureType Adapters put them in canonical form.

· The FeatureType interfaces are used by applications

2. The Relational Data Model

Nested tables comprise a tree of tables, where coordinates and data can be placed at any level of the nesting:
  table {

    table {

    } t1;

    table {

      table {

      } t3;

    } t2;
  } s;

Each leaf of the tree when flattened defines a separate table, which is the contents of that leaf with all of its parents. In the above example, there are two flattened tables:
FT1: (s,t1)

FT2: (s,t2,t3)

Each flat table is a collection of PointFeatures, since there is always a x,y,z, and time coordinate, and a collection of data variables collocated in space and time for each row. Thus Point Feature types are collections of PointFeatures with a particular arrangement of nested tables and positions where the coordinate variables are found in the nesting. Completely flattening a tree like this loses all connectivity information and makes the table highly unnormalized.
A normalized relational table representation merges all nested tables of the same type into a single table, and represents the nesting though primary/foreign keys:
  table {

    key s;

  } s;

  table {

    key t1;

    foreignKey s;

  } t1;

  table {

    key t2;

    foreignKey s;

  } t2;
  table {

    key t3;

    foreignKey t2;

  } t3;

For a concrete example, here is the CDM structure of the ON29 format, an ASCII precursor to BUFR:

  Structure {

     String stationName;

     float lat;

     float lon;

     float elev;
     int nreports;
     Sequence {

       int time;

       char timeISO(20);

       short reportType;

       short instType;

       char reserved(7);

       Sequence {

         float pressure;

         float geopotential;

         float temperature;

         float dewpoint;

         short windDir;

         short windSpeed;

         char qualityFlags(4);

       } mandatoryLevels(*);

       Sequence {

         float pressure;

         float temperature;

         float dewpoint;

         char qualityFlags(3);

       } tempPressureLevels(*);

       Sequence {

         float pressure;

         short windDir;

         short windSpeed;

         char qualityFlags(2);

       } windPressureLevels(*);

       Sequence {

         float pressure;

         float temperature;

         float dewpoint;

         short windDir;

         short windSpeed;

         char qualityFlags(4);

       } tropopause(*);

       Sequence {

         float pressure;

         short percentClouds;

         char qualityFlags(2);

       } clouds(*);

       Sequence {

         int data;

         short table101code;

         char indicatorFlags(2);

       } otherData(*);

     } report(*);

   } stationProfiles(station=1046);
In nested table form, showing only the coordinate variables:
  table {
     float lat;

     float lon;

     float elev;
     table {

       int time;

       table {

         float pressure;

       } mandatoryLevels;

       table {

         float pressure;

       } tempPressureLevels;

       table {

         float pressure;

       } windPressureLevels;

       table {

         float pressure;

       } tropopause;

       table {

         float pressure;

       } clouds;

       table {

       } otherData;

     } report;

   } stationProfiles;
In normalized relational form, showing only the coordinate variables and foreign keys:
  table {
     float lat;

     float lon;

     float elev;
  } stationProfiles;
  table {

    int time;

    key stationProfiles;
  } report;

  table {

    float pressure;

    key report;
  } mandatoryLevels;

  table {

    float pressure;

    key report;
  } tempPressureLevels;

  table {

    float pressure;

    key report;
  } windPressureLevels;

  table {

    float pressure;

    key report;
  } tropopause;

  table {

    float pressure;

    key report;
 } clouds;

  table {

    key report;
  } otherData;

While this relational model correctly represents the data, the only join that makes sense appears to be station -> report -> levels, that is, the one that expressed the nested table hierarchy. So it seems that the full generality of the relational model is not particular useful here. 

Concentrating on just one of the inner tables, suppose that there were a fixed number of levels:

  dimension nlevels = 22;

  table {
     float lat;

     float lon;

     float elev;
     table {

       int time;

       table {

         float pressure;

       } mandatoryLevels(nlevels);

     } report;

   } stationProfiles;
It’s not easy to represent this structurally in the relational model, since all of the levels are in a single table. One could add a numberOfObservations field to query, but this would be a fact exogenous to the model.
  table {
     float lat;

     float lon;

     float elev;

  } stationProfiles;
  table {

    int time;

    key stationProfiles;

    int numberOfObservations;

  } report;

  table {

    float pressure;

    key report;
  } mandatoryLevels;

Similarly, to represent a constant set of levels in the nested table:

  dimension nlevels = 22;

  float pressure(nlevels);

  table {
     float lat;

     float lon;

     float elev;
     table {

       int time;

       table {

       } mandatoryLevels(nlevels);

     } report;

   } stationProfiles;
is awkward in the relational model:
  table {
     float val;

  } pressure;
  table {
     float lat;

     float lon;

     float elev;

  } stationProfiles;
  table {

    int time;S
    key stationProfiles;

    int nobs;
  } report;

  table {

    key pressure;

    key report;
  } mandatoryLevels;

The relation model, of course, is designed for ad-hoc queries, not for expressing these kinds of regularities in structural metadata.

The CUASI ODM 
The CUAHSI Community Observations Model (ODM) is a relational data model for hydrological data. It appears to be essentially a star schema, with the DataValues table at its center. A DataValues row contains a single measured data value, along with observed time. The location is factored out into a Sites table, which contains latitude, longitude and elevation, along with other qualifying metadata such as datum, accuracy, etc. It allows for a vertical offset through the OffsetType table. It thus corresponds to our StationFeature and StationProfileFeature types. The offset field can also represent distance from a reference point. The lat, lon location can thus be qualified by the offset and the accuracy fields which implies that the lat, lon location should be thought of as search discriminate, with specialized software examining the data to assign a more exact location.

The ODM has various detailed semantics appropriate to a specialized data model.  By flattening data into one value per row requiring 60 or more bytes, more storage space will be required than in a specialized storage format. Clearly they have traded this for the richness of their semantic model and the generality of the relational data model. 

It appears to be feasible to use the ODM as a backend to a CDM data service providing StationFeature and StationProfileFeature typed objects. Special handling of the various tables would require some work. For example, to map into the OGC WFS would require an expert in that domain to clarify the relationships of the ODM with the OGC data model. It would be harder to map CDM StationFeature and StationProfileFeature typed objects into the ODM in a general way due to the lack of corresponding semantics in the CDM.
3. Subsetting Operations on PointFeature

  public PointFeatureCollection subset(LatLonRect boundingBox, DateRange dateRange) 

  public StationFeatureCollection subset(List<Station> stations);

  public StationFeature getStationFeature(Station s, DateRange dateRange);

  public StationProfileFeatureCollection subset(List<Station> stations);

  public StationProfileFeature getStationProfileFeature(Station s, DateRange dateRange);

