
NetCDF and Scientific Data Durability

Russ Rew, UCAR Unidata
ESIP Federation Summer Meeting

2009-07-08

For preserving data, is format obsolescence a
non-issue?

 Why do formats (and their access software) change?
 Are format changes consistent with data preservation

and stewardship?
 How can the evolution of formats support

preservation and stewardship?
 What principles should guide format developers in

support of data durability?
 What are the most important threats to netCDF data

in archives?

Why do open formats and their supporting
software libraries change?

 To better represent data semantics
 Capturing intent of data providers
 Exploiting metadata advances, new conventions

 To improve performance, avoid obsolescence
 Compression, caching, chunking, indexing, …
 Parallel file systems

 To enhance interoperability
 Replacing specialized formats with more general formats

 To fix mistakes
 32-bit offsets for data in files
 ASCII characters for all metadata

 To respond to users’ needs

How do formats change?

 Simple formats don’t
change, they’re
defined once and
frozen forever

 Some formats change
infrequently and
usually incompatibly

 Complex formats
(and their software)
may evolve in lots of
small increments

ASCII

GRIB 1

GRIB 2

1.0

2.4.3

4.0.1

3.6.3

netCDF

NetCDF: not just a format

 A standard format for platform-independent data
(NASA ESDS-RFC-011)

 CF-netCDF is being proposed as a formal OGC
binary encoding standard

 A data model for multidimensional and structured
scientific data

 A set of application programming interfaces (C,
Java, Fortran, C++, …) for data access

 A reference implementation for the APIs

But netCDF is also

How has netCDF changed?

OPeNDAP client support,
integration/inclusion of udunits and libcf,

improved HDF5 and HDF4 support

netCDF-4
64-bit offset

classic
2009: 4.1

C++ API, optimizations, format spec publishedclassic1996: 2.4

C, F77 “version 3” type-safe APIsclassic1997: 3.3

Java API, limited large file support, performance
enhancementsclassic1998: 3.4

new Java API, Fortran-90 APIclassic2001: 3.5

NcML, 64-bit offset format64-bit offset
classic2006: 3.6

Enhanced data model, expanded APIs,
HDF5 storage layer, compression, chunking,

parallel I/O, Unicode names, …

netCDF-4
64-bit offset

classic
2008: 4.0

C, F77 APIsclassic1989: 1.0

FeaturesFormatsSoftware

Ways to deal with format changes

 Use only published standards for archives
 Format standardization is slow

GRIB1 (1985) to GRIB2 (2001)
 Impractical if many intermediate versions (e.g CF Conventions 1.0,

1.1, 1.2, 1.3, 1.4, 1.5, …)
 Convert archived data periodically

 Upgrading older formats is costly, risky
 Migrating to a more general format may break older access

software
 Save data access software versions with data

 Requires data archives to become software version control
repositories

 Imposes often unnecessary burden on data access
 Rely on a commitment to compatibility by format developers,

maintainers, and responsible organization

Compatibility commitment

 For scientific data, preserving access to data for
future generations should be sacrosanct

 Strong commitment is needed to ensure practical
access to old data by new programs

 Careful library evolution can ensure data and API
compatibility

 An example public commitment presented at
American Meteorological Society annual meeting,
January 2006 …

For future access to archives, netCDF development will
continue to ensure the compatibility of:

 Data access: netCDF software will provide both read and
write access to all earlier forms of netCDF data.

 Programming interfaces: C and Fortran programs using
documented netCDF APIs from previous versions will
continue to work after recompiling and relinking (if needed).

 Future versions: netCDF will continue to support both data
access compatibility and API compatibility in future releases.

Declaration of Compatibility

Aspects of compatibility

 Costs
 Effort to support older interfaces and formats
 Comprehensive compatibility testing with every software

release
 Benefits

 Data in archives don’t have to change
 Client program sources don’t have to change
 Software can access archived data without being aware of

format version
 Implemented by compatibly evolving data model

 Add or grow abstractions, instead of replacing them
 Ensure previous data model is included in enhanced data

model

Classic netCDF data model

A file has variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a

common grid. One dimension may be of unlimited length.

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

File
 location: Filename
 create(), open(), …

Variables and attributes have one of six primitive data
types.

DataType

PrimitiveType
char
byte
short
int

float
double

Enhanced netCDF data model, for netCDF-4

A file has a top-level unnamed group. Each group may contain
one or more named subgroups, user-defined types, variables,
dimensions, and attributes. Variables also have attributes.

Variables may share dimensions, indicating a common grid. One
or more dimensions may be of unlimited length.

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

Group
 name: String

File
 location: Filename
 create(), open(), …

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.

DataType

PrimitiveType
char
byte
short
int

int64
float

double
unsigned byte
unsigned short
unsigned int

unsigned int64
string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

NetCDF-4 classic-model: a transitional format

netCDF-3

netCDF-4
classic model

netCDF-4

• Compatible with existing
applications

• Simplest data model and API

• Not compatible with some existing
applications

• Enhanced data model and API,
more complex, powerful

• Uses classic API for compatibility

• Uses netCDF-4/HDF5 storage for
compression, chunking, performance

• To use, just recompile, relink

Other ways netCDF supports data durability

 CF Conventions add earth-science specific
semantics to low-level data model, without changing
format

 Java netCDF reads multiple data formats through an
abstract Common Data Model interface
HDF4, HDF5, HDF-EOS, GRIB1, GRIB2, BUFR, GEMPAK,

GINI, DMSP, NEXRAD, …

 NcML wrappers support efficient addition of new
metadata, virtual aggregations

 “history” attribute for provenance automatically
maintained by utilities like NCO

 Concluding remarks

 Format obsolescence need not be an issue for data durability
 Evolve data models by extension, not by incompatible

modification
 Preserve previous programming interfaces
 Support previous format variants transparently
 Avoid gratuitous invention of new formats
 Data preservation and stewardship requires much more than

dealing with format evolution
 Economic failures
 Organizational failures
 Operator or administrative errors
 Hardware problems
 Software errors

