
NetCDF and Scientific Data Durability

Russ Rew, UCAR Unidata
ESIP Federation Summer Meeting

2009-07-08

For preserving data, is format obsolescence a
non-issue?

 Why do formats (and their access software) change?
 Are format changes consistent with data preservation

and stewardship?
 How can the evolution of formats support

preservation and stewardship?
 What principles should guide format developers in

support of data durability?
 What are the most important threats to netCDF data

in archives?

Why do open formats and their supporting
software libraries change?

 To better represent data semantics
 Capturing intent of data providers
 Exploiting metadata advances, new conventions

 To improve performance, avoid obsolescence
 Compression, caching, chunking, indexing, …
 Parallel file systems

 To enhance interoperability
 Replacing specialized formats with more general formats

 To fix mistakes
 32-bit offsets for data in files
 ASCII characters for all metadata

 To respond to users’ needs

How do formats change?

 Simple formats don’t
change, they’re
defined once and
frozen forever

 Some formats change
infrequently and
usually incompatibly

 Complex formats
(and their software)
may evolve in lots of
small increments

ASCII

GRIB 1

GRIB 2

1.0

2.4.3

4.0.1

3.6.3

netCDF

NetCDF: not just a format

 A standard format for platform-independent data
(NASA ESDS-RFC-011)

 CF-netCDF is being proposed as a formal OGC
binary encoding standard

 A data model for multidimensional and structured
scientific data

 A set of application programming interfaces (C,
Java, Fortran, C++, …) for data access

 A reference implementation for the APIs

But netCDF is also

How has netCDF changed?

OPeNDAP client support,
integration/inclusion of udunits and libcf,

improved HDF5 and HDF4 support

netCDF-4
64-bit offset

classic
2009: 4.1

C++ API, optimizations, format spec publishedclassic1996: 2.4

C, F77 “version 3” type-safe APIsclassic1997: 3.3

Java API, limited large file support, performance
enhancementsclassic1998: 3.4

new Java API, Fortran-90 APIclassic2001: 3.5

NcML, 64-bit offset format64-bit offset
classic2006: 3.6

Enhanced data model, expanded APIs,
HDF5 storage layer, compression, chunking,

parallel I/O, Unicode names, …

netCDF-4
64-bit offset

classic
2008: 4.0

C, F77 APIsclassic1989: 1.0

FeaturesFormatsSoftware

Ways to deal with format changes

 Use only published standards for archives
 Format standardization is slow

GRIB1 (1985) to GRIB2 (2001)
 Impractical if many intermediate versions (e.g CF Conventions 1.0,

1.1, 1.2, 1.3, 1.4, 1.5, …)
 Convert archived data periodically

 Upgrading older formats is costly, risky
 Migrating to a more general format may break older access

software
 Save data access software versions with data

 Requires data archives to become software version control
repositories

 Imposes often unnecessary burden on data access
 Rely on a commitment to compatibility by format developers,

maintainers, and responsible organization

Compatibility commitment

 For scientific data, preserving access to data for
future generations should be sacrosanct

 Strong commitment is needed to ensure practical
access to old data by new programs

 Careful library evolution can ensure data and API
compatibility

 An example public commitment presented at
American Meteorological Society annual meeting,
January 2006 …

For future access to archives, netCDF development will
continue to ensure the compatibility of:

 Data access: netCDF software will provide both read and
write access to all earlier forms of netCDF data.

 Programming interfaces: C and Fortran programs using
documented netCDF APIs from previous versions will
continue to work after recompiling and relinking (if needed).

 Future versions: netCDF will continue to support both data
access compatibility and API compatibility in future releases.

Declaration of Compatibility

Aspects of compatibility

 Costs
 Effort to support older interfaces and formats
 Comprehensive compatibility testing with every software

release
 Benefits

 Data in archives don’t have to change
 Client program sources don’t have to change
 Software can access archived data without being aware of

format version
 Implemented by compatibly evolving data model

 Add or grow abstractions, instead of replacing them
 Ensure previous data model is included in enhanced data

model

Classic netCDF data model

A file has variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a

common grid. One dimension may be of unlimited length.

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

File
 location: Filename
 create(), open(), …

Variables and attributes have one of six primitive data
types.

DataType

PrimitiveType
char
byte
short
int

float
double

Enhanced netCDF data model, for netCDF-4

A file has a top-level unnamed group. Each group may contain
one or more named subgroups, user-defined types, variables,
dimensions, and attributes. Variables also have attributes.

Variables may share dimensions, indicating a common grid. One
or more dimensions may be of unlimited length.

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

Group
 name: String

File
 location: Filename
 create(), open(), …

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.

DataType

PrimitiveType
char
byte
short
int

int64
float

double
unsigned byte
unsigned short
unsigned int

unsigned int64
string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

NetCDF-4 classic-model: a transitional format

netCDF-3

netCDF-4
classic model

netCDF-4

• Compatible with existing
applications

• Simplest data model and API

• Not compatible with some existing
applications

• Enhanced data model and API,
more complex, powerful

• Uses classic API for compatibility

• Uses netCDF-4/HDF5 storage for
compression, chunking, performance

• To use, just recompile, relink

Other ways netCDF supports data durability

 CF Conventions add earth-science specific
semantics to low-level data model, without changing
format

 Java netCDF reads multiple data formats through an
abstract Common Data Model interface
HDF4, HDF5, HDF-EOS, GRIB1, GRIB2, BUFR, GEMPAK,

GINI, DMSP, NEXRAD, …

 NcML wrappers support efficient addition of new
metadata, virtual aggregations

 “history” attribute for provenance automatically
maintained by utilities like NCO

 Concluding remarks

 Format obsolescence need not be an issue for data durability
 Evolve data models by extension, not by incompatible

modification
 Preserve previous programming interfaces
 Support previous format variants transparently
 Avoid gratuitous invention of new formats
 Data preservation and stewardship requires much more than

dealing with format evolution
 Economic failures
 Organizational failures
 Operator or administrative errors
 Hardware problems
 Software errors

