NetCDF and Scientific Data Durability

Russ Rew, UCAR Unidata
ESIP Federation Summer Meeting
2009-07-08

Ny
g *

For preserving data, is format obsolescence a
non-issue?

Why do formats (and their access software) change?

Are format changes consistent with data preservation
and stewardship?

How can the evolution of formats support
preservation and stewardship?

What principles should guide format developers in
support of data durability?

What are the most important threats to netCDF data
In archives?

Why do open formats and their supporting
software libraries change?

To better represent data semantics
o Capturing intent of data providers
o Exploiting metadata advances, new conventions

To improve performance, avoid obsolescence

o Compression, caching, chunking, indexing, ...

o Parallel file systems
To enhance interoperability

o Replacing specialized formats with more general formats
To fix mistakes

o 32-bit offsets for data in files
a ASCII characters for all metadata

To respond to users’ needs

How do formats change?

s Simple formats don't
change, they're
defined once and

ASCII

frozen forever

s Some formats change
infrequently and

GRIB 1

GRIB 2

usually incompatibly

m Complex formats
(and their software)

may evolve in lots of 243

small increments netCDF
1.0

J_,JT.OH

' 3.6.3

HE
netCDF

NetCDF: not just a format

x A standard format for platform-independent data
(NASA ESDS-RFC-011)

s CF-netCDF is being proposed as a formal OGC
binary encoding standard

But netCDF is also

s A data model for multidimensional and structured
scientific data

= A set of application programming interfaces (C,
Java, Fortran, C++, ...) for data access

= A reference implementation for the APls

How has netCDF changed?
Software Formats Features
netCDF-4 OPeNDAP client support,
2009: 41 64-bit offset integration/inclusion of udunits and libcf,
classic improved HDF5 and HDF4 support
netCDF-4 Enhanced data model, expanded APIs,
2008: 4.0 64-bit offset HDF5 storage layer, compression, chunking,
classic parallel 1/0, Unicode names, ...
2006: 3.6 | O4-Pitoffset NGML, 64-bit offset format
classic
2001: 3.5 classic new Java API, Fortran-90 API
1998- 3.4 classic Java API, limited large file support, performance
enhancements
1997: 3.3 classic C, F77 “version 3” type-safe APls
1996: 2.4 classic C++ API, optimizations, format spec published
1989: 1.0 classic C, F77 APIs

Ways to deal with format changes

Use only published standards for archives

o Format standardization is slow
GRIB1 (1985) to GRIB2 (2001)

o Impractical if many intermediate versions (e.g CF Conventions 1.0,
1.1,1.2,1.3,14,15, ..))

Convert archived data periodically
o Upgrading older formats is costly, risky

o Migrating to a more general format may break older access
software

Save data access software versions with data

o Requires data archives to become software version control
repositories

o Imposes often unnecessary burden on data access

Rely on a commitment to compatibility by format developers,
maintainers, and responsible organization

Compatibility commitment

For scientific data, preserving access to data for
future generations should be sacrosanct

Strong commitment is needed to ensure practical
access to old data by new programs

Careful library evolution can ensure data and API
compatibility
An example public commitment presented at

American Meteorological Society annual meeting,
January 20006 ...

Declaration of Compatibility

For future access to archives, netCDF development will
continue to ensure the compatibility of:

. Data access: netCDF software will provide both read and
write access to all earlier forms of netCDF data.

« Programming interfaces: C and Fortran programs using
documented netCDF APIs from previous versions will
continue to work after recompiling and relinking (if needed).

« Future versions: netCDF will continue to support both data
access compatibility and API compatibility in future releases.

n

Aspects of compatibility

m Costs
o Effort to support older interfaces and formats
o Comprehensive compatibility testing with every software
release
= Benefits
o Data in archives don’t have to change
o Client program sources don’t have to change
o Software can access archived data without being aware of
format version
s Implemented by compatibly evolving data model
o Add or grow abstractions, instead of replacing them

o Ensure previous data model is included in enhanced data
model

Classic netCDF data model

Attribute

name: String
type: DataType
values: 1D array

File Variables and attributes have one of six primitive data
‘: location: Filename l‘ types.
create(), open(), ... DataType
! i
PrimitiveType
char
byte
short
Dimension int
. float
name: String double
length: int
1sUnlimited()
Variable

name: String

—" shape: Dimension|]

type: DataType

A file has variables, dimensions, and attributes. Variables also

array: read(), ...

have attributes. Variables may share dimensions, indicating a

common grid. One dimension may be of unlimited length.

Enhanced netCDF data model, for netCDF-4

File

Variables and attributes have one of twelve primitive

location: Filename

data types or one of four user-defined types.

create(), open(), ...

N

Attribute

name: String

type: DataType

values: 1D array

—" shape: Dimension|]

type: DataType

array: read(), ...

* DataType
Group ¢ UserDefinedType PrimitiveType
- Stri |
LB S |‘_' typename: String char
‘ byte
T A A A short
- - Enum int
Dimension int64
name: String float
length: int Opaque dou‘t;}e;
. .. unsigne te
isUnlimited() unsi ggned S}?;Ol’t
Compound : :
unsigned int
S unsigned int64
ar_la ¢ VariableLength string
name: String

A file has a top-level unnamed group. Each group may contain
one or more named subgroups, user-defined types, variables,

dimensions, and attributes. Variables also have attributes.
Variables may share dimensions, indicating a common grid. One
or more dimensions may be of unlimited length.

NetCDF-4 classic-model: a transitional format

netCDF-4

netCDF-4
classic model

netCDF-3

Not compatible with some existing
applications

Enhanced data model and API,
more complex, powerful

Uses classic API for compatibility

Uses netCDF-4/HDF5 storage for
compression, chunking, performance

To use, just recompile, relink

Compatible with existing
applications

Simplest data model and API

Other ways netCDF supports data durability

CF Conventions add earth-science specific
semantics to low-level data model, without changing
format

Java netCDF reads multiple data formats through an
abstract Common Data Model interface
HDF4, HDF5, HDF-EOS, GRIB1, GRIB2, BUFR, GEMPAK,
GINI, DMSP, NEXRAD, ...
NcML wrappers support efficient addition of new
metadata, virtual aggregations

“history” attribute for provenance automatically
maintained by utilities like NCO

Concluding remarks

Format obsolescence need not be an issue for data durability
Evolve data models by extension, not by incompatible
modification
Preserve previous programming interfaces
Support previous format variants transparently
Avoid gratuitous invention of new formats
Data preservation and stewardship requires much more than
dealing with format evolution
o Economic failures
Organizational failures
Operator or administrative errors
Hardware problems
Software errors

o O O O

