Writing NetCDF Files: Formats,
Models, Conventions, and Best
Practices

Russ Rew, UCAR Unidata
June 28, 2007

Nz _
¥ wee O =i

@
“Eﬁﬂ . unidaTta [_[netCDF libcf

Overview

Formats, conventions, and models
NetCDF-3 limitations

NetCDF-4 features: examples and
potential uses

Compatibility issues
Conventions issues
Recommendations

Data Abstraction Levels:
Formats, Conventions, and Models

Data tCDF CDM
ne
Models classic i rcr (netCDF-4) ore
Data netCDF Unidata
. ARGO
Conventions i User Guide Obs

e —
netCDF classic| HDE5 netCDF-4
— ——
—
CDL
GRIB1 GRIB2 _
3

HDF-EOS
Data

Formats

o
5
N
o

BUFR

NetCDF Formats

2005

2002

1988

Commitment to Backward Compatibility

Because preserving access to archived data for
future generations is sacrosanct :

Data access: New netCDF software will provide read
and write access to all earlier forms of netCDF data.

APls and programs: Existing C, Fortran, and Java
netCDF programs will be supported by new netCDF
software (possibly after recompiling).

Commitment: Future versions of netCDF software will
continue to support data access, API, and conventions
compatibility.

Purpose of Data Conventions

To capture meaning in data

To make files self-describing

To faithfully represent intent of data provider
To foster interoperability

To add value to formats

— Raise level of abstraction (e.g. adding coordinate
systems)

— Customize format for discipline or community (e.g.
climate modeling)

netCDF Unidata
CF‘”’J UserGuideJ Obs J ARGOJ J

NetCDF conventions

Users Guide conventions:

— Simple coordinate variables (same name for dimension and
variable)

— Common attributes: units, long_name, valid_range,
scale_factor, add_offset, FillValue, history,
Conventions, ...

— Not just for earth-science data

Followed by lots of community conventions:
COARDS, GDT, NCAR-RAF, ARGO, AMBER,
PMEL-EPIC, NODC, ..., CF

Unidata Obs Conventions for netCDF-3 (supported
by Java interface)

Climate and Forecast conventions (CF) endorsed by
Unidata (2005)

Unidata committed to development of libcf (2006)

CF Conventions (cfconventions.org)

Clear, comprehensive, consistent (thanks to Eaton,
Gregory, Drach, Taylor, Hankin)

standard_name attribute for identifying quantities,
comparison of variables from different sources

Coordinate systems support
Grid cell bounds and measures
Acceptance by community: IPCC AR4 archive, ...

Governance and stewardship: GO-ESSP, BADC,
PCMDI, WCRP/WGCM (pending)

CF Conventions Issues

 cf-metadata mailing list

 cfconventions.org site: documents, forums,
wiki, Trac system

* GO-ESSP annual meetings

» Recent CF issues and proposed CF extensions

— Structured grids, staggered grids, subgrids, curvilinear
coordinates (Balaiji)

— Unstructured grids (Gross)
— Forecast time axis (Gregory, Caron)

— Means and subgrid variation and anomaly modifier for
standard names

— Additions needed for observational data
— NetCDF-4 issues
— Needs for IPCC AR5 model output archives

Scientific Data Models

) netCDF CDM
Relational GIS B cic (NetCDF-4) HDF5

« Tabular data
— Relational model
— Tuples, types, queries, operations, normalization, integrity constraints
» Geographic data
— GIS models
— Features and coverages, observations and measurements
— Adds spatial location to relational model
* Multidimensional array data
— Basis of netCDF, HDF models
— Dimensions, variables, attributes
» Scientific data types
— Coordinate systems, groups, types: structures, varlens, enums

— N-dimensional grids, in situ point observations, profiles, time series,
trajectories, swaths, ...

NetCDF Data Models

+ “Classic” netCDF model (netCDF-3 and
earlier)
— Dimensions, Variables, and Attributes
— Character arrays and a few numeric types
— Simple, flat
* CDM (netCDF-4 and later)
— Dimensions, Variables, Attributes, Groups, Types
— Additional primitive types including strings
— User-defined types support structures, variable-
length values, enumerations

— Power of recursive structures: hierarchical groups,
nested types

Classic NetCDF Data Model

create(), open(), ...

Variables and attributes
have one of six primitive

data types.
Attribute Dimension DataType
name: String name: String
type: DataType length: int :)har
values: 1D array S UnFor T
isUnlimited() e
int
Variable float
Mo St double
name: String
shape: Dimension][]
type: DataType
array: read(), ...

A file has named variables, dimensions, and attributes. A
variable may also have attributes. Variables may share
dimensions, indicating a common grid. One dimension may
be of unlimited length.

Some Limitations of Classic NetCDF
Data Model and Format

* Little support for data structures, just
multidimensional arrays and lists

* No nested structures or “ragged arrays”

* Only one shared unlimited dimension for appending
new data efficiently

* Flat name space for dimensions and variables
» Character arrays rather than strings

+ Small set of numeric types

+ Constraints on sizes of large variables

* No compression, just packing

* Schema additions may be very inefficient

+ Big-endian bias may hamper performance on little-
endian platforms

NetCDF-4 Data Model

File Variables and attributes have one of twelve primitive
data types or one of four user-defined types.

P 1

location: Filename

create(), open(), ...

’— UserDefinedType PrimitiveType
e: Stril
typename: String ;l;:;
A short
Enum int
- Dimension - T
Attribute - "
= String name: String 7 float
name:
. length: int e i double
type: DataType - —. unsigned byte
isUnlimited() ;

values: 1D array

unsigned short

| Compound I

unsigned int
unsigned int64
string

Variable

name: String

VariableLength

shape: Dimension]]
A file has a top-level unnamed group. Each group may contain

one or more named subgroups, user-defined types, variables,
dimensions, and attributes. Variables also have attributes.
Variables may share dimensions, indicating a common grid. One
or more dimensions may be of unlimited length.

type: DataType

array: read(), ...

NetCDF-4 Format and Data Model
Benefits

HDF5-based format provides:

* Per-variable compression

» Per-variable
multidimensional tiling
(chunking)

* Ample variable sizes

* Reader-makes-right
conversion

+ Efficient dynamic schema
additions

e Parallel /O

New data model provides:

* Groups for nested scopes

+ User-defined enumeration
types

+ User-defined compound
types

» User-defined variable-
length types

* Multiple unlimited
dimensions

+ String type
+ Additional numeric types

Chunking

» Allows efficient access of multidimensional data

along multiple axes

« Compression applies separately to each chunk
« Can improve /O performance for very large arrays
and for compressed variables

+ Default chunking parameters are based on a size of
one in each unlimited dimension

—

index order

chunked

NetCDF-4 Data Model Features

Examples in “CDL-4"
— Groups

— Compound types

— Enumerations

— Variable-length types

Not necessarily best practices
Other potential known uses
Advice on known limitations
Potential conventions issues

Example Use of Groups

Organize data by named property, e.g. region:

group Europe {
group France {
dimensions: time = unlimited, stations = 47;
variables: float temperature(time, stations);
}
group England{
dimensions: time = unlimited, stations = 61;
variables: float temperature(time, stations);
}
group Germany {
dimensions: time = unlimited, stations = 53;
variables: float temperature(time, stations);

}

dimensions: time = unlimited;
variables: float average temperature(time);

Potential Uses for Groups

* Factoring out common information
— Containers for data within regions, ensembles
— Model metadata

* Organizing a large number of variables

* Providing name spaces for multiple uses of

same names for dimensions, variables,
attributes

* Modeling large hierarchies

Example Use of Compound Type

Vector quantity, such as wind:

types:
compound wind vector t {
float eastward ;
float northward ;
}
dimensions:
lat 18 ;
lon 36 ;
pres 15 ;
time 4 ;
variables:
wind vector t gwind(time, pres, lat, lon) ;
wind:long name = "geostrophic wind vector" ;
wind:standard name = "geostrophic wind vector" ;
data:

gwind = {1, -2.5}, {-1, 2}, {20, 10}, {1.5, 1.5}, ...

20

10

Another Compound Type Example

Point observations :

types:
compound ob_t {
int station_id ;
double time ;
float temperature ;
float pressure ;

}

dimensions:

nstations = unlimited ;
variables:

ob t obs(nstations) ;
data:

obs = {42, 0.0, 20.5, 950.0}, .. ;

21

Potential Uses for Compound Types

* Representing vector quantities like wind
* Modeling relational database tuples
* Representing objects with components

+ Bundling multiple in situ observations together
(profiles, soundings)

* Providing containers for related values of other user-
defined types (strings, enums, ...)

* Representing C structures portably

* CF Conventions issues:
— should type definitions or names be in conventions?
— should member names be part of convention?

— should quantities associated with groups of compound
standard names be represented by compound types?

22

11

Drawbacks with Compound Types

* Member fields have type and name, but are
not netCDF variables

« Can’t directly assign attributes to compound
type members
— New proposed convention solves this problem, but
requires new user-defined type for each attribute
* Compound type not as useful for Fortran
developers, member values must be
accessed individually

23

Example Convention for Member Attributes

types:
compound wind vector t {
float eastward ;
float northward ;
}
compound wv_units t {
string eastward ;
string northward ;
}
dimensions:
station = 5;
variables:
wind vector t wind(station) ;
wv_units_t wind:units = {"m/s", "m/s"} ;
wind vector t wind: Fillvalue = {-9999, -9999} ;
data:
wind = {1, -2.5}, {-1, 2}, {20, 10}, ... ;

24

12

Example Use of Enumerations

Named flag values for improving self-description:

types:
byte enum cloud t {

Clear = 0, Cumulonimbus = 1, Stratus = 2,
Stratocumulus = 3, Cumulus = 4, Altostratus = 5,
Nimbostratus = 6, Altocumulus = 7, Missing = 127
}i

dimensions:
time = unlimited;

variables:
cloud t primary cloud(time);

cloud t primary cloud: FillValue = Missing;
data:

primary cloud = Clear, Stratus, Cumulus, Missing, ..

25

Potential Uses for Enumerations

 Alternative for using strings with f1lag values
and flag meanings attributes for quantities
such as soil type, cloud type, ...

* Improving self-description while keeping data
compact
« CF Conventions issues:

— standardize on enum type definitions and
enumeration symbols?

— include enum symbol in standard name table?

— standardize way to store descriptive string for
each enumeration symbol?

26

13

Example Use of Variable-Length Types

In situ observations:

types:
compound obs_t { // type for a single observation
float pressure ;
float temperature ;
float salinity ;

}
obs_t some obs t(*) ; // type for some observations
compound profile t ({ // type for a single profile

float latitude ;
float longitude ;
int time ;

some_obs_t obs ;

}
profile t some profiles t(*) ; // type for some profiles
compound track_t { // type for a single track

string id ;
string description ;
some_profiles t profiles;
}
dimensions:
tracks = 42;
variables:
track t cruise(tracks); // this cruise has 42 tracks

27

Potential Uses for Variable-Length Type
« Ragged arrays

* In situ observational data (profiles,
soundings, time series)

28

14

Notes on netCDF-4 Variable-Length Types

* Variable length value must be accessed all at
once (e.g. whole row of a ragged array)

* Any base type may be used (including
compound types and other variable-length
types)

* No associated shared dimension, unlike
multiple unlimited dimensions

* Due to atomic access, using large base types
may not be practical

29

Recommendations and Best
Practices ...

30

15

NetCDF Data Models and File Formats

Data providers writing new netCDF data have
two obvious alternatives:

1. Use netCDF-3: classic data model and
classic format

2. Use richer netCDF-4 data model and
netCDF-4 format

and a third less obvious choice:

3. Use classic data model with the netCDF-4
format

31

Third Choice: “Classic model’ netCDF-4

* Psuedo format supported by netCDF-4 library
with file creation flag

* Ensures data can be read by netCDF-3
software (relinked to netCDF-4 library)

« Compatible with current conventions

« Writers get performance benefits of new
format

* Readers can

— access compressed or chunked variables
transparently

— get performance benefits of reader-makes-right
— use HDFS5 tools on files

32

16

NetCDF-4 Format and Data Model
Benefits

HDF5-based format provides:

* Per-variable compression

» Per-variable
multidimensional tiling
(chunking)

* Ample variable sizes

* Reader-makes-right
conversion

+ Efficient dynamic schema
additions

e Parallel /O

New data model provides:

Groups for nested scopes

User-defined enumeration
types

User-defined compound
types

User-defined variable-
length types

Multiple unlimited
dimensions

String type
Additional numeric types

33

Why Not Make Use of
NetCDF-4 Data Model Now?

* C-based netCDF-4 software still only in beta release
(depending on HDF5 1.8 release)

+ Few netCDF utilities or applications adapted to full

netCDF-4 model yet

* Development of useful conventions will take

experience, time

+ Significant performance improvements available now,
without netCDF-4 data model
— using classic model with netCDF-4 format

34

17

When to Use NetCDF-4 Data Model

+ On “greenfield projects” (lacking legacy issues or
constraints of prior work)

+ If non-classic primitive types needed
— 64-bit integers for statistical applications
— unsigned bytes, shorts, or ints for wider range
— real strings instead of fixed-length char arrays
+ If making data self-descriptive requires new user-
defined types
— compound
— variable-length
— enumerations
— nested combinations of types

+ If multiple unlimited dimensions needed

+ If groups needed for organizing data in hierarchical
name scopes

35

Recommendations for Data Providers

« Continue using classic data model and
format, if suitable

 Evaluate practicality and benefits of
classic model with netCDF-4 format

» Test and explore uses of extended
netCDF-4 data model features

* Help evolve netCDF-4 conventions and
Best Practices based on experience
with what works

36

18

Best Practices: Where to Go From Here

* We’re updating current netCDF-3 Best
Practices document before Workshop in July

* New “Developing Conventions for NetCDF-4"
document is under development

* Benchmarks may help with guidance on
compression, chunking parameters, use of
compound types

* We depend on community experience for
distillation into new Best Practices

37

Adoption of NetCDF-4: A Three-Stage
Chicken and Egg Problem

« Data providers

— Won't be first to use features not supported by
applications or standardized by conventions

* Application developers

— Won't expend effort needed to support features
not used by data providers and not standardized
as published conventions

« Convention creators
— Likely to wait until data providers identify needs
for new conventions
— Must consider issues application developers will
confront to support new conventions

38

19

Thanks!

Questions?

39
F90
apps
for
Perl,
Fr7 | MeCDF3 (oot | Python, F90
apps apps Ruby, ... apps
for for apps for Fo0 Java
Java c netCDF-3 netCDF-3 for c netCDF-4 apps apps
A netCDF-3 netCDF-3 for for
fpps afpps F90 afpps c HDF5 HDF5
or or . or
netCDF | netCDF-3 ety netCDF-4 s
or
HDF5
netCDF-3
netCDF-3 netCDF-3 Perl, netCDF-4
F77 C++ Python, F90
library library R}uby,' library
libraries HDF5 HDF5
F90 Java
library library
nthDF netCDF-4 C library
ava
library
netCDF-3 C library HDF5 C library
JVM Posix 1/0 MPI I/O zlib, ...

Operating system

40

