
Advances in the NetCDF Data Model,
Format, and Software

Russ Rew
Coauthors: John Caron, Ed Hartnett, Dennis Heimbigner

UCAR Unidata
December 2010

Outline

•  Background

•  Recent advances
–  Refactoring for interoperability
–  Performance improvements
–  Experience adapting software to enhanced data model

–  Standards status

•  State of adoption of netCDF-4

•  Summary

NetCDF: more than a format

•  Data model
–  netCDF-3 classic data model: Variables, Dimensions, Attributes
–  netCDF-4 enhanced data model: adds Groups, user-defined Types

•  File format
–  classic format, 64-bit variant

–  netCDF-4 (HDF5-based) format, classic model variant

•  Application programming interfaces (APIs)
–  C-based APIS: C, Fortran, C++, Python, Perl, Ruby, MATLAB, IDL, …
–  Java API: Java, MATLAB

Together, the data model, file format, and APIs support
the creation, access, and sharing of scientific data

What is netCDF?

1989: portable, self-describing data format, data model,
and software for creation, access, and sharing of
scientific data

1990's: growth of use in ocean and climate models, 3rd-
party software support (NCO, NCL, IDL, MATLAB)

2002: Java version with OPeNDAP client support

2003: NASA funded netCDF-4/HDF5 project; Argonne/
Northwestern parallel netCDF

2004: netCDF-Java plug ins for reading other formats,
NcML aggregation service

2007: netCDF-Java Common Data Model (access to
other formats through netCDF interface)

2008: netCDF-4 C and Fortran library with HDF5
integration, enhanced data model, parallel I/O

2009: “netCDF classic” format standard endorsed

2010: version 4.1.1 - OPeNDAP client support for C/
Fortran libraries; udunits, CF library support;
pnetcdf, HDF4 access

Development Milestones

The netCDF “classic” data model, in UML

Attribute
 name: String
 type: primitive
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: primitive
 values: type[…]

NetCDF Data

Dimension
 name: String
 length: int

0..* 0..* 0..*

0..* 0..*

NetCDF Data has
Variables (eg temperature, pressure)
Attributes (eg units)
Dimensions (eg lat, lon, level, time)

Variables have
Name, shape, type, attributes
N-dimensional array of values

Dimensions have
Name, length
One dimension may grow

Variables may share dimensions
Represents shared coordinates, grids

Six Primitive types
8-bit byte, 16-bit short, 32-bit int,
32-bit float, 64-bit double, arrays of char

NetCDF classic data model

Strengths

 Data model simple to
understand and explain

 Efficient implementation
freely available

 Generic applications easy
to develop

 Representation good for
gridded multidimensional
data

 Shared dimensions useful
for coordinate systems

Limitations

  Small set of primitive types
  Flat data model limited to

multidimensional arrays,
lists, (name, value) pairs

  Flat name space not ideal
for organizing data objects

  Lacks nested structures,
variable-length types,
enumerations

NetCDF classic format

Strengths

 Simple to understand and
explain

 Supported by many
applications

 Standard used in many
archives, data projects

 Mature conventions and
best practices have
evolved

Limitations

  Schema changes may be
costly

  No support for compression
  Only one dimension can

grow efficiently
  Portable representation

favors big-endian platforms

The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named
subgroups, user-defined types, variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a common grid. One

or more dimensions may be of unlimited length. 	

Dimension
 name: String
 length: int

Attribute
 name: String
 type: DataType
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: DataType
 values: type[…]

Group
 name: String

File

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.	

DataType

PrimitiveType
char
byte

short
int

float
double

unsigned byte
unsigned short

unsigned int
int64

unsigned int64
string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

0..*

1..*

0..*

0..*

0..*

0..*

0..*
0..*

NetCDF enhanced data model

Strengths

 Simpler than HDF5, with similar
representational power

 Adds shared dimensions to HDF5 data
model

 Continues support for existing data,
software, and conventions

 Eliminates netCDF classic model
limitations

 Provides nested structures: hierarchical
groups, recursive data types

 Independent features permit
incremental adaptation, adoption

On the other hand

  More complex than
classic data model

  More effort required to
develop general tools
and applications

  Not yet widely adopted
  Hence, no

comprehensive best
practices and
conventions yet

(Data Model, Format) combinations

•  (Classic, Classic)
–  Mature conventions, best practices (e.g. CF Conventions)
–  Maximum portability, compatibility with old software

•  (Classic, netCDF-4)
–  Requires only relinking instead of modifying software
–  Performance benefits: compression, chunking, larger variables, efficient

schema changes

•  (Enhanced, netCDF-4)
–  Additional data types, including user-defined
–  Advantages in modeling data, including observational data
–  High Performance Computing applications
–  Datasets with large number of data objects
–  Reading other kinds of data (HDF4, HDF5, relational, …)

Recent advances

Standards
Refactoring architecture for interoperability
Performance improvements
Generic tools
Practical experience
Status of netCDF-4 adoption

Standards: from traction to sanction

•  2009-02-05: NASA Earth Science Data Systems (ESDS)
Standards Process Group endorsed netCDF classic and 64-bit
offset formats as appropriate for NASA Earth Science data.

•  2010-03-1: Integrated Ocean Observing System (IOOS) Data
Management and Communications (DMAC) Subsystem
endorsed netCDF with Climate and Forecast (CF)
conventions as a preferred data format.

•  2010-09-27: Steering Committee of the Federal Geographic
Data Committee (FGDC) officially endorsed netCDF as a
Common Encoding Standard.

•  2010-11-05: Open Geospatial Consortium (OGC) began vote on
approving "OGC Network Common Data Form (NetCDF) Core
Encoding Standard version 1.0 ” as a new OGC standard. The
vote closes on January 4, 2011.

NetcdfDataset	

Applica/on	

Scien/fic	 Feature	 Types	

OPeNDAP	 NetCDF-‐3	

HDF4	

I/O	 service	 provider	

GRIB	

GINI	

NIDS	

NetcdfFile	

NetCDF-‐4	

…	
Nexrad	

DMSP	

CoordSystem	 Builder	

Datatype	 Adapter	

NcML

Georeferencing	 Access	

Index	 Space	 Access	

NetCDF-Java/Common Data Model architecture

NcML

C library refactored for interoperability

Application

netCDF

libdispatch

libsrc
(classic)

libsrc4
(netCDF-4)

libncdap3
(OPeNDAP)

libncdap4
(OPeNDAP)

other
handlers

…

Common interfaces and code
factored into a new “dispatch layer”

•  Simpler code
•  Easier maintenance
•  Easier handling of additional

formats & protocols (I/O plugins)

Performance improvements

•  Refactored read code for large speedup on opening netCDF-4
files with compressed or chunked variables

•  Speedup variable and dimension lookup by name

•  Improved memory allocation to reduce memory footprint

•  Reduced memory when parallel I/O used

•  Eliminated memory leaks

•  Improved read code w.r.t. handling a large number of netCDF-4
attributes and variables

•  Applied intelligent caching to remote access for OPeNDAP client

•  Some of these improvements are in upcoming version 4.1.2

Generic tools

•  Adapted generic tools to netCDF-4 enhanced data model
ncdump: converts netCDF data to CDL text form
ncgen: converts CDL text to netCDF data or generates program
nccopy: copies netCDF data, optionally converting to a different form

•  Proved practicality of handling potentially infinite number of
user-defined nested

•  Tool adaptation led to API additions

Experience developing nccopy utility

•  Shows any netCDF-4 data can be accessed through API without
previous or built-in knowledge of user-defined data types

•  Showed netCDF-4 API is adequate for handling arbitrary nesting
of groups and user-defined types

•  Provides evidence that programming generic netCDF-4
applications is not too difficult
–  Classic data model: 500 lines of C
–  Enhanced data model: 900 lines of C

•  Demonstrates usefulness of additional higher-level APIs for tool
developers
–  Iterator APIs for simpler data access
–  APIs that make recursion unnecessary (e.g. visiting groups, comparing

values of a user-defined type)

Practical experience

•  Most experience to date is with netCDF-4 classic
model format
–  uses netCDF-3 classic data model, APIs
–  uses netCDF-4 HDF5-based format
–  provides backward compatibility
–  Enables performance features: compression,

multidimensional tiling (chunking), efficient schema changes,
parallel I/O, …

•  Adoption proceeding smoothly in a 3-step process
1.  Relink applications with netCDF-4 library

2.  Continue use of classic model, netCDF-3 APIs but with netCDF-4
classic model format to get performance benefits

3.  Make use of features of enhanced model, as needed/supported

Last year: game of “chicken”; who goes first?

•  Data producers

–  Waiting until netCDF enhanced data
model features are supported by more
software, development of conventions

•  Developers

–  Waiting for netCDF data that requires
enhanced model and for development of
conventions

•  Convention creators

–  Waiting for data providers and software
developers to identify needs for new
conventions based on usage experience

•  Result: “chicken-and-egg logjam”
–  Delays effective use of advances in scientific

data models for large and complex collections

Status of netCDF-4 adoption: Logjam
appears to be broken

•  NetCDF-4 enhanced model support in language APIs: C, Java
(read only), C++ (beta), Fortran

•  Partial support for netCDF-4 enhanced model also in NCO,
NCL, Panoply, Python API, …

•  NetCDF-4 classic model support in analysis and visualization
apps: IDL, GrADS, CDAT, MATLAB, IDV, NCO, NCL, CDO,
PyNGL, ncview, Panoply, Ferret, OGC WMS and WCS clients

•  Data providers using netCDF-4 classic model format for
transparent compression and chunking: groups in NASA, NOAA,
GFDL, COLA

•  CMIP5 decided to continue using classic model and classic
format (no compression) due to time accessing compressed
data on server

Concluding Remarks
•  Data providers may begin to use compression/chunking with

confidence that most users and software can read it
transparently, after relinking with netCDF-4

•  Developers may adapt software to netCDF-4 format by relinking
•  Developers may adapt software to enhanced data model

incrementally, with examples that such adaptation is practical
•  Upgrading software to make use of higher-level abstractions of

netCDF-4 enhanced data model has significant benefits
–  Data providers can use more natural representation of complex data

semantics
–  More natural conventions become possible
–  End users can access other types of data through netCDF APIs

•  As we keep pushing common tasks into libraries, scientists can
focus on doing science instead of data management

For more information

Web site: www.unidata.ucar.edu/netcdf/

Russ Rew: russ@unidata.ucar.edu

Extra Slides

New primitive types

•  Unsigned numeric types better for representing data providers
intent
–  ubyte: 8-bit unsigned interger
–  ushort: 16-bit unsigned integer
–  uint: 32-bit unsigned integer

•  64-bit integers needed for statistics and counts in large datasets
–  int64: 64-bit signed integer

–  uint64: 64-bit unsigned integer

•  Variable-length strings an overdue improvement over character
arrays
–  string: compact, variable-length strings

Groups

•  Like directories in a file system, Groups provide name spaces
and a hierarchy of containers

•  Uses
–  Factoring out common information

•  Containers for data within regions, ensembles
•  Model metadata

–  Organizing a large number of variables
–  Providing name spaces for multiple uses of same names for dimensions,

variables, attributes
–  Modeling large hierarchies

Variable-length types

Uses:

•  Ragged arrays

•  Modeling relational tables

•  Nested with compound types for in situ observational data
(profiles, soundings, time series)

•  Example: observations along ocean tracks
–  each track has an ID, a description, and a variable-length list of profiles

•  each profile has a latitude, longitude, time, and a variable-length list of
observations

–  each observation records pressure, temperature, and salinity at various depths

Compound types

Uses include:

•  Representing vector quantities like wind
•  Bundling multiple in situ observations together (profiles,

soundings)
•  Modeling relational database tuples
•  Providing containers for related values of other user-defined

types (strings, enums, ...)

•  Representing C structures, Fortran derived types portably

Nested types

•  Compound types may include other variable-length types or
compound types as members

•  Variable-length types may include other compound types or
variable-length types as members

•  Result is a potentially infinite number of user-defined data types

•  Handling this in software can be new or intimidating to software
developers

Guidance for developers

•  Add support for netCDF enhanced data model features incrementally

–  new primitive types: unsigned numeric types and strings

–  nested Groups (simple recursion)

–  enumeration types (easy, no nesting)

–  opaque types (easy, no nesting)

–  compound types with only primitive members

–  compound types with fixed-size array members

–  variable-length arrays of primitives

–  compound types with members of user-defined type

–  variable-length arrays of user-defined types

•  Look at nccopy for examples that read or write netCDF-4 data with all these
features

To ensure future access to existing data archives, Unidata is
committed to compatibility of:

  Data access: new versions of netCDF software will provide
read and write access to previously stored netCDF data.

  Programming interfaces: C and Fortran programs using
documented netCDF interfaces from previous versions will
work without change with new versions of netCDF software.

  Future versions: Unidata will continue to support both data
access compatibility and program compatibility in future
netCDF releases.

Commitment to Compatibility

