Nativi, Mazzetti
04 Oct 07

1) In our opinion the concept of "Asynchronous Access" might be misleading, we consider it as the “Persistent Storage” capability of the server; naturally, it is effective only in some asynchronous use cases.
2) Therefore, we considered two types of WCS servers:

a. Servers with Persistent storage capability

b. Servers with no Persistent storage capability

3) Another Server feature is its support of either immediate or delayed content availability
4) We will refer generally to Synchronous/Asynchronous client-server interactions; they encompass the “Synchronous/Asynchronous Response”.
5) As for the GetCoverage response retrieve, another useful Server capability might be the ability to implement either the “pull” or the “push” modality.

In our opinion, the following (rather complex () table should cover the main use cases.

For simplicity, we are interested in the pull retrieves without redirection only.

	
	PERSISTENT STORAGE
	NON-PERSISTENT STORAGE

	
	Pull
	Push
	Pull
	Push

	IMMEDIATE AVAILABILITY
	· store = True;

· Server answers with a redirection message

	· store = True;

· call-back parameter must be provided by the client
· Server sends the resource address, as soon as the content is ready
	store = False;
(the WCS 1.0 case)
	· store = False;

· call-back parameter must be provided by the client
· Server sends the resource content, as soon as possible

	DELAYED AVAILABILITY
	· store = True;

· Client must retrieve the resource status information in a polling way
	· store = True;

· call-back parameter must be provided by the client
· Server sends the resource address, as soon as the content is ready
	· store = False;
· Client must re-issue the same GetCoverage request until the server is able to provide back the coverage
	· store = False;
· call-back parameter must be provided by the client
· Server sends the resource content, as soon as possible

	

	Synchronous

Interactions

	Asynchronous

Interactions

Possible use case examples
Sequence diagrams

The following figures show the sequence diagrams for different interactions with different storage (Persistant or Non-persistent), availability (Immediate or Delayed) and interaction (Pull or Push) models. The sequences are presented using HTTP request and response messages.
	[image: image1.emf]

	
	[image: image2.emf]

	Non-persistent storage

Immediate availability

Pull retrieving
	
	Persistent storage

Immediate availability

Pull retrieving

	[image: image3.emf]

	
	[image: image4.emf]

	Non-Persistent storage

Delayed availability

Pull retrieving
	
	Persistent storage

Delayed availability

Pull retrieving

	[image: image5.png]2202 Accepted [datus]

3 POST cbURI foortert]

4200 0K

	
	[image: image6.emf]

	Non-persistent storage

Immediate/Delayed availability

Push retrieving
	
	Persistent storage

Immediate/Delayed availability

Push retrieving

Requirements

Non-persistent vs. Persistent storage

In order to support Non-persistent and Persistent storage, redirection must be supported.

In HTTP this is supported through the 302 – Found code and the Location header.

Immediate vs. Delayed Availability

In order to support Immediate and Delayed availability the client and the server must support status reports.

In HTTP this is supported through the 202 - Accepted code and specific content.

The decision about immediate or delayed availability could be:

· server-based: e.g. if the processing could require a time longer than the typical connection duration, the server could respond with a 202 code. Otherwise the complete processing is performed and the content is provided (200 code).

· client-based: the client could decide to wait for the resource even if a processing is required.

Push vs. Pull retrieving

In order to support Push and Pull retrieving the client and the server must support a notification mechanism. A technique could be based on call-back URIs which provide an address where the server can upload the content. This URI could be directed through an upload server or to a server process in the client node.

Implementation in WCS

For a full implementation in WCS the following specifications should be included:

Store parameter support

A store request parameter can be used for negotiating persistence:

store := “true” | “false”

If the store parameter is “true” the resource is made persistent assigning it a new URI. The new URI must be provided in the response.

Status description content

The response message can be one of the following

<response message> ::= <content> | <status message>

The <status message> is defined according a XML schema
Redirection support
The response can be a redirection message which provide the URI where the content is (or will be) available.

Push interactions
The following two functionalities are required for supporting Push interactions. They are reported for the sake of completeness but their implementation is postponed to a future WCS x.y version.

Call-back support

A callback request parameter can be used for supporting push interaction:

callback ::= <URI>

When the server receive the callback parameter, It will make available the content body or the content URI on that URI.

Notification/upload message support

A schema for defining the notification/upload message must be provided.

