
Contents

1. Installation Instructions 4
1.1. Introduction . 4
1.2. Downloading the VisAD Source Code 4
1.3. Building VisAD . 7
1.4. Building Native Code for the HDF-EOS and HDF-5 File Adapters . . . 9
1.5. Building Native Code for Applications 10
1.6. Downloading VisAD Classes in Jar Files 11
1.7. Problems . 14

I. Ugo Taddei’s VisAD Tutorial 15

2. How to use this Tutorial 17

3. Introduction to VisAD 18
3.1. Overview . 18
3.2. Designing a Typical VisAD Application 20

3.2.1. Creating Data . 20
3.2.2. Displaying Data . 24
3.2.3. Interacting with Data . 25
3.2.4. Summary . 26

3.3. Our First VisAD Application . 26

4. The Basics 31
4.1. Drawing scales and using units for RealType 31
4.2. Scaling axes . 33
4.3. Plotting points by using a different MathType 33
4.4. Using a ConstantMap to Change Data Depiction Attributes 39
4.5. Using a SelectRange Map to limit plotting and adding two DataRefer-

ences to a display . 39
4.6. Extending the MathType and using Display.RGB 42
4.7. New Units, and changing line width with GraphicsModeControl 44
4.8. Plotting two quantities on same axis . 47

1

4.9. Using a Gridded1DSet . 47
4.10. Using a RangeWidget . 50
4.11. Using a SelectRangeWidget . 50

5. Two-dimensional Sets 54
5.1. Handling a 2-D array of data: using an Integer2DSet 54
5.2. Continuous 2-D domain values: using a Linear2DSet 59
5.3. Color components: using different DisplayRealTypes 59
5.4. Mapping quantities to different DisplayRealTypes 64
5.5. Using IsoContour . 69
5.6. Controlling contour properties: using ContourControl 72
5.7. IsoContours over image . 75
5.8. Using the GraphicsModeControlWidget 78
5.9. Combining color and isocontour in an extended MathType 80

6. Three-dimensional Displays 83

7. Animation 84

8. Interaction 85

II. Other VisAD Tutorials for Java Programmers 86

9. The VisAD DataModel Tutorial 87
9.1. Introduction . 87
9.2. Scalars . 87

9.2.1. Real (actual) numbers . 87
9.2.2. Estimating Errors . 88
9.2.3. Using Units . 89

9.3. Tuples . 91
9.3.1. Making the MathTypes . 92
9.3.2. Using numbers . 92
9.3.3. Arithmetic with Tuples . 92

9.4. Sets . 93
9.4.1. Making a Set . 94
9.4.2. Set methods . 94

9.5. Functions . 95
9.5.1. Sampling modes . 97

9.6. Parting points... 97

2

10.The VisAD DataRenderer Tutorial 98
10.1. Overview of DataRenderers . 98

10.1.1. Reasons for Non-Default DataRenderers 99
10.1.2. How to Avoid Writing Non-Default DataRenderers 101
10.1.3. DataRenderer Constructors . 102
10.1.4. ShadowTypes . 102
10.1.5. DisplayRealTypes . 106
10.1.6. General DataRenderer Theory of Operation 106
10.1.7. General ShadowType Theory of Operation (KEY SECTION) . . 108
10.1.8. Direct Manipulation Theory of Operation 113

III. The VisAD Cookbock 117

11.Curtis Rueden’s example apps 118
11.1. Additional VisAD examples . 118

11.1.1. AnchoredPoint . 118
11.1.2. CursorSSCell . 120
11.1.3. FormulaEval . 123
11.1.4. IrregularRenderTest . 124
11.1.5. LinearRenderTest . 126
11.1.6. MiniDataServer . 127
11.1.7. RadialLine . 129
11.1.8. RiversColor . 134
11.1.9. SurfaceAnimation . 136
11.1.10.WhiteSSCell . 137

IV. Other helpful stuff 139

3

1. Installation Instructions

1.1. Introduction
VisAD is a pure Java system for interactive and collaborative visualization and analysis
of numerical data. It is described in detail in the VisAD Java Class Library Developers
Guide available from the VisAD web page at http://www.ssec.wisc.edu/~billh/
visad.html

1.2. Downloading the VisAD Source Code
To download the VisAD source code, first make sure the current directory is a directory
in your CLASSPATH (which we will refer to as ’/parent_dir’ through the rest of
this README file). Then get ftp://ftp.ssec.wisc.edu/pub/visad-2.0/visad_
src-2.0.jar
If you have previously downloaded the VisAD source you should run ’make clear’ in

your visad directory to clear out the old source files before you unpack the new source.
Unpack the jar file by running:

jar xvf visad_src-2.0.jar

Unpacking VisAD will create the following sub-directories:

visad the core VisAD package

visad/ss VisAD Spread Sheet

visad/formula formula parser

visad/java3d Java3D displays for VisAD

visad/java2d Java2D displays for VisAD

visad/util VisAD UI utilities

visad/collab collaboration support

visad/cluster data and displays distributed on clusters

4

http://www.ssec.wisc.edu/~billh/visad.html
http://www.ssec.wisc.edu/~billh/visad.html
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/visad_src-2.0.jar
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/visad_src-2.0.jar

visad/python python scripts for VisAD

visad/browser connecting applets to VisAD servers

visad/math math (fft, histogram) operations

visad/matrix JAMA (matlab) matrix operations

visad/data VisAD data (file) format adapters

visad/data/units VisAD Units subsystem

visad/data/fits VisAD - FITS file adapter

visad/data/netcdf VisAD - netCDF file adapter

visad/data/netcdf/in netCDF file adapter input

visad/data/netcdf/out netCDF file adapter output

visad/data/netcdf/units units parser for netCDF adapter

visad/data/hdfeos VisAD - HDF-EOS file adapter

visad/data/hdfeos/hdfeosc native interface to HDF-EOS

visad/data/vis5d VisAD - Vis5D file adapter

visad/data/mcidas VisAD - McIDAS file adapter

visad/data/gif VisAD - GIF file adapter

visad/data/tiff VisAD - TIFF file adapter

visad/data/visad VisAD serialized object file adapter

visad/data/hdf5 VisAD - HDF-5 file adapter

visad/data/hdf5/hdf5objects VisAD - HDF-5 file adapter

visad/data/amanda VisAD - F2000 file adapter (neutrino events)

visad/data/text VisAD - text file adapter

visad/data/in VisAD - data input pipeline

visad/data/jai VisAD file adapter for images using JAI

visad/data/ij VisAD file adapter for images using ImageJ

5

visad/data/gis VisAD - ArcGrid and USGS DEM file adapters

visad/data/dods VisAD - DODS object adapter

visad/data/bio VisAD - Bio-Formats adapter

visad/install VisAD-in-a-box installer

visad/paoloa GoesCollaboration application

visad/paoloa/spline spline fitting application

visad/aune ShallowFluid application

visad/benjamin Galaxy application

visad/rabin Rainfall estimation spread sheet

visad/bom wind barb rendering for ABOM

visad/jmet JMet - Java Meteorology package

visad/aeri Aeri data visualization

visad/georef specialized earth coordinates

visad/meteorology meteorology

visad/gifts GIFTS

visad/sounder atmospheric sounding package

visad/examples small application examples

nom/tam/fits Java FITS file binding

nom/tam/util Java FITS file binding

nom/tam/test Java FITS file binding

ucar/multiarray Java netCDF file binding

ucar/util Java netCDF file binding

ucar/netcdf Java netCDF file binding

ucar/tests Java netCDF file binding

edu/wisc/ssec/mcidas Java McIDAS file binding

6

edu/wisc/ssec/mcidas/adde Java McIDAS file binding

ncsa/hdf/hdf5lib Java HDF-5 file binding

ncsa/hdf/hdf5lib/exceptions Java HDF-5 file binding

gnu/regexp GNU Regular Expressions for Java

gnu/regexp/util GNU Regular Expressions for Java

HTTPClient Jakarta Commons HttpClient

loci/formats LOCI Bio-Formats package

loci/formats/in Bio-Formats - read image formats

loci/formats/out Bio-Formats - write image formats

loci/formats/gui Bio-Formats - GUI components

loci/formats/codec Bio-Formats - codecs

These directories correspond to the packages in distributed with VisAD, except that
the classes in visad/examples are in the default package (i.e., they do not include a
package statement).

1.3. Building VisAD
We recommend you use Apache Ant, a cross platform Java-based build tool "kind of
like make, without make’s wrinkles."
Alternately, you can use Unix make or Windows NMAKE as follows.
Your CLASSPATH should include:

1. The parent directory of your visad directory.

2. The current directory.

Thus if VisAD is installed at /parent_dir/visad and you use csh, your .cshrc file
should include:

setenv CLASSPATH /parent_dir:.

VisAD requires JDK 1.4 and Java3D. More information about these is available at:

http://java.sun.com/

7

On systems that support Unix make, you can simply run:

make debug

to compile the Java source code in all the directories unpacked from the source
distribution, as well as native code in the visad/data/hdfeos/hdfeosc directory and
certain application directories. If you want ’make debug’ to compile native libraries,
then you may need to change the line:

JAVADIR=/opt/java

in visad/Makefile if your java is installed in a directory other than /opt/java.
If you have NMAKE on Windows (2K, XP) you may run this from within the visad

directory:

set CLASSPATH=c:\parent_dir;.\
nmake -f makefile.winnt debug

This does not compile native code. parent_dir is as defined above – the VisAD
source code has been unpacked into C:\parent_dir\visad.
Note that using ’make debug’ rather than ’make compile’ will enable you to run

using jdb in place of java in order to make error reports that include line numbers in
stack dumps.
If you cannot use Apache Ant, Unix make or Windows NMAKE, you must invoke

the Java compiler on the Java source files in all the directories unpacked from the
source distribution. Note that the Java source code in the visad/examples directory
has no package, so you must run cd visad/examples before you compile these Java
source files.
If you do not use ant or make, then you must also run the rmic compiler on the

following classes (after they are compiled by the javac compiler):

• visad.RemoteActionImpl

• visad.RemoteCellImpl

• visad.RemoteDataImpl

• visad.RemoteDataReferenceImpl

• visad.RemoteDisplayImpl

• visad.RemoteFieldImpl

• visad.RemoteFunctionImpl

8

• visad.RemoteReferenceLinkImpl

• visad.RemoteServerImpl

• visad.RemoteSlaveDisplayImpl

• visad.RemoteThingImpl

• visad.RemoteThingReferenceImpl

• visad.collab.RemoteDisplayMonitorImpl

• visad.collab.RemoteDisplaySyncImpl

• visad.collab.RemoteEventProviderImpl

• visad.cluster.RemoteAgentContactImpl

• visad.cluster.RemoteClientAgentImpl

• visad.cluster.RemoteClientDataImpl

• visad.cluster.RemoteClientFieldImpl

• visad.cluster.RemoteClientTupleImpl

• visad.cluster.RemoteClusterDataImpl

• visad.cluster.RemoteNodeDataImpl

• visad.cluster.RemoteNodeFieldImpl

• visad.cluster.RemoteNodePartitionedFieldImpl

• visad.cluster.RemoteNodeTupleImpl

1.4. Building Native Code for the HDF-EOS and
HDF-5 File Adapters

Although VisAD is a pure Java system, it does require native code interfaces in its
adapters for HDF-EOS and HDF-5 file formats. We believe that the need for these will
disappear as the organizations supporting these file formats develop Java interfaces.
You can build the necessary libraries from source or on Sparc Solaris you can simply

download ftp://ftp.ssec.wisc.edu/pub/visad-2.0/libhdfeos.so

9

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/libhdfeos.so

into your visad/data/hdfeos/hdfeosc directory, and download the appropriate file
(for Sparc Solaris, Irix, Linux and Windows) from ftp://hdf.ncsa.uiuc.edu/HDF5/
current/java-hdf5/JHI5_1_1_bin/lib/
into your ncsa/hdf/hdf5lib directory according to instructions available under

Download at http://hdf.ncsa.uiuc.edu/java-hdf5-html/
The HDF-EOS and HDF-5 file adapters include native interfaces (JNI) to file in-

terfaces written in C. To make the HDF-EOS VisAD native library on systems that
support Unix make, change to the visad/data/hdfeos/hdfeosc directory and run
make all.
Note that the native code in visad/data/hdfeos/hdfeosc does not include NASA/Hughes’

HDF-EOS C file interface code; it only includes our C native code for creating a Java
binding to their HDF-EOS C file interface. You must obtain the HDF-EOS C file in-
terface code directly from NASA and NCSA. To do this, please follow the instructions
in:

visad/data/hdfeos/README.hdfeos

We have successfully linked these libraries on Irix and Solaris.
You can also make the HDF-5 native libraries from source, according to instructions

available from http://hdf.ncsa.uiuc.edu/java-hdf5-html/
Before you can run applications that use the HDF-EOS and HDF-5 file adapters,

you must add

/parent_dir/visad/data/hdfeos/hdfeosc

and:

/parent_dir/ncsa/hdf/hdf5lib

to your LD_LIBRARY_PATH.

1.5. Building Native Code for Applications
Although VisAD is a pure Java system, applications of VisAD may include native
code. The reality is that most science code is still written in Fortran.
The applications in visad/paoloa, visad/paoloa/spline, visad/aune and visad/benjamin

also include native code in both C and Fortran.
Edit the Makefile in the visad/paoloa, visad/paoloa/spline, visad/aune and visad/ben-

jamin to change the path:

JAVADIR=/opt/java

10

ftp://hdf.ncsa.uiuc.edu/HDF5/current/java-hdf5/JHI5_1_1_bin/lib/
ftp://hdf.ncsa.uiuc.edu/HDF5/current/java-hdf5/JHI5_1_1_bin/lib/
http://hdf.ncsa.uiuc.edu/java-hdf5-html/
http://hdf.ncsa.uiuc.edu/java-hdf5-html/

to point to the appopriate directory where you installed Java.
On systems that support Unix make, change to each of the directories visad/paoloa,

visad/paoloa/spline, visad/aune and visad/benjamin run make. This will create
the shared object files (i.e., file names ending in ".so") containing native code. To run
these applications make sure that your LD_LIBRARY_PATH includes ".", change to one
of these directories:

/parent_dir/visad/paoloa
/parent_dir/visad/paoloa/spline
/parent_dir/visad/aune
/parent_dir/visad/benjamin

and run the appropriate java ... command.
Note that the applications in visad/paoloa require data files available from ftp:

//ftp.ssec.wisc.edu/pub/visad-2.0/paoloa-files.tar.Z

1.6. Downloading VisAD Classes in Jar Files
If you want to write applications for VisAD but don’t want to compile VisAD from
source, you can dowload a jar file that includes the VisAD classes. This file is ftp:
//ftp.ssec.wisc.edu/pub/visad-2.0/visad.jar
Once you’ve got visad.jar simply add:

/parent_dir/visad.jar;.

to your CLASSPATH. Then you can compile and run applications that import the
VisAD classes. However, if your application uses the HDF-EOS or HDF-5 file format
adapters, then you will need to compile the native code as described in Section 4 of
this README file. The visad.jar file includes the classes from these packages:

visad the core VisAD package

visad/ss VisAD Spread Sheet

visad/formula formula parser

visad/java3d Java3D displays for VisAD

visad/java2d Java2D displays for VisAD

visad/util VisAD UI utilities

visad/collab collaboration support

11

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/paoloa-files.tar.Z
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/paoloa-files.tar.Z
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/visad.jar
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/visad.jar

visad/cluster data and displays distributed on clusters

visad/python python scripts for VisAD

visad/browser connecting applets to VisAD servers

visad/math math (fft, histogram) operations

visad/matrix JAMA (matlab) matrix operations

visad/data VisAD data (file) format adapters

visad/data/units VisAD Units subsystem

visad/data/fits VisAD - FITS file adapter

visad/data/netcdf VisAD - netCDF file adapter

visad/data/netcdf/in netCDF file adapter input

visad/data/netcdf/out netCDF file adapter output

visad/data/netcdf/units units parser for netCDF adapter

visad/data/hdfeos VisAD - HDF-EOS file adapter

visad/data/hdfeos/hdfeosc native interface to HDF-EOS

visad/data/vis5d VisAD - Vis5D file adapter

visad/data/mcidas VisAD - McIDAS file adapter

visad/data/gif VisAD - GIF file adapter

visad/data/tiff VisAD - TIFF file adapter

visad/data/visad VisAD serialized object file adapter

visad/data/hdf5 VisAD - HDF-5 file adapter

visad/data/hdf5/hdf5objects VisAD - HDF-5 file adapter

visad/data/amanda VisAD - F2000 file adapter (neutrino events)

visad/data/text VisAD - text file adapter

visad/data/in VisAD - data input pipeline

visad/data/jai VisAD file adapter for images using JAI

12

visad/data/gis VisAD - ArcGrid and USGS DEM file adapters

visad/data/dods VisAD - DODS object adapter

visad/data/bio VisAD - Bio-Formats adapter

visad/install VisAD-in-a-box installer

visad/paoloa GoesCollaboration application

visad/paoloa/spline spline fitting application

visad/aune ShallowFluid application

visad/benjamin Galaxy application

visad/rabin Rainfall estimation spread sheet

visad/bom wind barb rendering for ABOM

visad/jmet JMet - Java Meteorology package

visad/aeri Aeri data visualization

visad/georef specialized earth coordinates

visad/meteorology meteorology

nom/tam/fits Java FITS file binding

nom/tam/util Java FITS file binding

nom/tam/test Java FITS file binding

ucar/multiarray Java netCDF file binding

ucar/util Java netCDF file binding

ucar/netcdf Java netCDF file binding

ucar/tests Java netCDF file binding

edu/wisc/ssec/mcidas Java McIDAS file binding

edu/wisc/ssec/mcidas/adde Java McIDAS file binding

ncsa/hdf/hdf5lib Java HDF-5 file binding

ncsa/hdf/hdf5lib/exceptions Java HDF-5 file binding

13

gnu/regexp GNU Regular Expressions for Java

gnu/regexp/util GNU Regular Expressions for Java

HTTPClient Jakarta Commons HttpClient

loci/formats LOCI Bio-Formats package

loci/formats/in Bio-Formats - read image formats

loci/formats/out Bio-Formats - write image formats

loci/formats/gui Bio-Formats - GUI components

loci/formats/codec Bio-Formats - codecs

In order to run the examples with visad.jar, download ftp://ftp.ssec.wisc.edu/
pub/visad-2.0/visad_examples.jar
Unpack this jar file by running:

jar xvf visad_examples.jar

This will put *.java and *.class files into your visad/examples directory. Change
to that directory and run the appropriate example application. Make sure that ’.’ is
in your CLASSPATH.

1.7. Problems
If you have problems, send an email message to the VisADmailing list at visad@unidata.ucar.edu
Join the list by sending an email message to majordomo@unidata.ucar.edu with:

subscribe visad

as the first line of the message body (not the subject line). Please include any
compiler or run time error messages in the text of email messages to the mailing list.

14

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/visad_examples.jar
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/visad_examples.jar
mailto:visad@unidata.ucar.edu
mailto:majordomo@unidata.ucar.edu

Part I.

Ugo Taddei’s VisAD Tutorial

15

This is the PDF Version of The VisAD Tutorial, originally written by Ugo Taddei
and last updated on 19 august 2003. You can find the HTML Version of this tutorial
on http://www.ssec.wisc.edu/~billh/tutorial/index.html

16

http://www.ssec.wisc.edu/~billh/tutorial/index.html

2. How to use this Tutorial

This tutorial introduces some basic features of VisAD in order to allow you to start
programming with VisAD straight away. We assume no previous knowledge of the
library itself, but an understanding of the Java R© Programming Language is assumed.
We shall not, however, need to go very deep into Java. In order to run the examples
(and to later do your own development), you will need to install the VisAD package,
and the Java2 and Java3D software (see the VisAD Prerequistes for more details).
Starting with a very simple example, we will explain how to create visualization

programs for complex data structures. The reader should follow the basic tutorial
steps, in order to maximize the understanding of VisAD and to learn how different
displays can be created, as each step introduces a new feature.
The reader may, however, make use of the Index of Figures, where the program

screenshots are listed and which serves as a visual reference guide on how to change
display attributes and visualize data in different ways. The Index of Figures also
includes links to the sections and to the program code, which is completely available.
The Table of Contents lists the sections and sub-sections and also is useful as an

overview of both the tutorial and of VisAD capabilities.

17

3. Introduction to VisAD

This is the tutorial of VisAD, a Java Component Library for interactive analysis and
visualization of numerical data. We will start by describing how to write a simple
VisAD program to visualize some points as a single line and will, in section 2, contin-
uously extend the program to show how to use some VisAD features. In section 3 we
will turn our attention to 2-D Sets, which are the basis of images and 3-D surfaces.

3.1. Overview
A VisAD application generally starts with the definition of Data objects, which will
represent your data in the application. VisAD’s Data classes can represent simple
numbers, such as a temperature, simple text strings, such as the name of a weather
station, vectors of simple values, such as all of the data collected by a weather station
(temperature, air moisture, precipitation, wind), and arrays of values, such as a times
series of temperatures. In fact, VisAD Data objects can be assembled in complex
hierarchies, known as MathTypes, to represent virtually any numerical and text data.
VisAD’s Displays classes help you to construct displays of those data. These may

be 2-D or 3-D, they may be animated, and they may be interactive.
VisAD defines classes for computational Cells that can also be linked to Data objects

via DataReference objects (see below). Like Displays, Cells are updated whenever
values of linked Data change. Cells take their name from spread sheet cells, because
of the way spread sheet cells update when input values change.
VisAD also defines a variety of classes for User Interface objects. Many of these are

based on the Java Swing R© user interface toolkit, and they can all be easily embedded in
a Swing GUI (Display objects are also easily embedded in Swing GUIs). The VisAD
user interface classes are designed to help you design user interfaces for interactive
control of VisAD Displays.
VisAD also provides a helper class, called DataReference, that is used for linking

a Data object to a Display object. Once Data are linked to a Display object, the
display will update whenever Data values change. In fact, Displays and Cells both
extend Action, the general class for objects whose actions are triggered by changing
Data values.
To summarize, VisAD applications are constructed with the following objects:

18

Data objects these range from simple real number values, text strings and vectors of
real numbers, to complex hierarchies of data, which are referred to as MathType.

Display objects these generate interactive depiction of data. Display objects are
linked to data objects through the use of DataReference objects (see below).
Displays may be two- or three-dimensional, and provide extensive controls and
direct manipulation.

Cell objects these are computations that are invoked whenever their input Data ob-
jects change value. Cells take their name from cells of spread sheets and are, like
displays, linked to Data objects by means of a DataReference object.

User interface (UI) objects the user can use the Java Foundation Classes UI compo-
nents as data input interfaces. Nevertheless, VisAD provides a few specialized
UI components. The VisAD UI components may also be linked to Data, so that
Data values may be changed by them. UI objects may also link to Actions so
that they update whenever Data object values change.

DataReference objects these are pointers to Data objects. DataReference objects
are necessary to represent variable data, just as "x" represents 3 in "x = 3".

Before we move on to our first application we need to consider the nature of the
data that is to be visualized.
The VisAD data model defines a set of classes that can be used to build any hier-

achical numerical data structure. These complex hierarchical Data objects reflect the
structure of the actual data. The primitive Data classes are the subclasses of Scalar:
Real and Text, which contain a Java double and a text string, respectively. Data
structure is achieved by using Tuple, Set and Function classes and their subclasses.
All Data objects have a MathType, which indicates the type of mathematical object

that it approximates. Examples of MathTypes are: ScalarType (and its subclasses
RealType or TextType), TupleType (and its subclass RealTupleType), SetType, and
FunctionType.
Subclasses of Data are Scalar, Tuple, Set and Function. Subclasses of MathType

are ScalarType, TupleType, SetType, and FunctionType. In a sense, the Data hier-
archy reflects that of MathType.
Most applications include large Data objects that define some RealTypes as func-

tions of other RealTypes. The starting point for any new application of VisAD is
the definition of a set of MathTypes. For example, a simple function such as height =
f(time), where time and height are RealTypes, is denoted in the VisAD documentation
as

(time -> height)

19

and is defined with the FunctionType (time -> height). (Remeber: FunctionType
is a subclass of MathType.)
A more complex data structure, like that of an image, might be defined with the

MathType:

((row, column) -> (red, green, blue))

The output of a weather model may be described using the MathType:

(time -> ((latitude, longitude, altitude)
-> (temperature, pressure, dew_point, wind_u, wind_v, wind _w)))

So we move on to talk about a few aspects to consider when designing a VisAD
application.

3.2. Designing a Typical VisAD Application
When writing a VisAD application there are three main steps to take:

1. Creation of the data you want to visualize,

2. Creation of the display and other visualization objects and

3. Adding interaction and functionality through the use of user interfaces, UI, or
widgets.

Let us assume we have some data, and we want to build a VisAD application to
visualize those data. For example, we have a cube, and we have calculated and/or
measured the temperature inside it. So let us consider the above steps in more detail.

3.2.1. Creating Data
This is the first and most important step in designing a VisAD application. Although
the display and its objects define to a great extent how data is to be drawn, the
depiction also depends on the data structure. You might, for example, create a data
structure, a MathType, to draw a one-dimensional function as a line:

(x -> y)

and then force the display to draw the individual points, rather than to connect
them to make a line. On the other hand, your MathType might describe a set of (x,y)
points indexed by some variable, or in VisAD notation:

20

(index -> (x,y))

With the MathType above you’re saying, that you have a set of disconnected points.
In this case, there is no way to force the display to connect the points. You’d have to
create a new MathType.

The Domain

The first step in creating data with VisAD Data Objects is to identify the basic quanti-
ties, or scalars. For example, if we have a cube, we identify three scalars: height, width
and length. In VisAD, those would be ScalarTypes. As you know, ScalarTypes has
two subclasses: RealType and TextType. The latter is for use with text, whereas the
former is for use with "real" numbers ("real" in mathematical sense). So our three
cube dimensions are RealTypes. RealTypes are static within a VisAD application.
That means in practice, you can reuse them without the need to recreate them. They
are generally constructed with a Java String, that is, their name, and with a VisAD
unit. The units will be considered, for example, in calculations. Say, to create a
RealType h, for "height", you do:

RealType height = RealType . getRealType ("Height ") ;

or you can do

RealType height = RealType . getRealType ("Height " , SI . meter , nu l l) ;

to create a RealType with a unit, "meter". (Ignore the third argument for now; it
defines the default Set of this RealType.) This static method of the RealType class
will look for an already existing RealType called "height". If such RealType already
exists, then you cannot use the constructors above. Use instead the static methods.
So we have identified our cube dimensions as RealTypes. Together, the three of

them form a tuple, or, in VisAD, a RealTupleType. There are many ways to create
a RealTupleType, and we are going to come across them later on in the tutorial. For
now it suffices to say that we have created the basic "cube structure" with:

RealTupleType cubeTuple = new RealTupleType (height , width , length) ;

But what about the cube itself? How big is it? To answer these questions we have to
know "how" you’re defining your cube. Are you measuring height, width and length at
constant intervals or not? Are you measuring the vertices only, or are you measuring
some random points inside the cube? VisAD has a collection of data objects, Sets, to
represent different kinds of samplings. We assume our cube is 1 meter high, 2 meters

21

wide and 3 meters long. Furthermore we assume we measure height and width every
10 cm, but, for lazyness’ sake, we measure length every 50 cm, only. And for freedom’s
sake, we decide to put the cube’s width in the middle of our reference system. That
is, the extreme values for the width are -1 and 1. (OK, to be precise about it, it’s
a parallelepiped rather than a cube, but let’s call it "cube"). All this information,
together with the tuple of the cube dimensions, are defined in a three-dimensional
Set:

cubeSet = new Linear3DSet (cubeTuple , // ba s i c qu an t i t i e s g iven by height , ←↩
width and length

0 . 0 , 1 . 0 , 11 , // he ight s t a r t s at 0 .0 m, ends at 1 .0 m, and has ←↩
11 samples

−1.0 , 1 . 0 , 21 , // width s t a r t s at −1.0 m, ends at 1 .0 m, and has ←↩
21 samples

0 . 0 , 3 . 0 , 7) ; // l ength s t a r t s at 0 .0 m, ends at 3 .0 m, and has 7←↩
samples , one value every 50 cm

The word "Linear" means that sampling is regular. If the sampling is regular, and
they occur at integer values, say, from 0 to N, than consider using an "Integer" set.
If you were to sample the cube in a grid whose points are not regularly spaced, but
they nevertheless form a grid, than you’d use a "Gridded" Set, and provide the Set
with the individual height, width and length values. Should you know nothing about
the topology of your sampling, that is, whether they form a grid or whether they are
just randomly spread inside the cube, than you might want to use an "Irregular" Set,
and let VisAD figure the topology out. you may have already guessed, that VisAD
has 1-D and 2-D, as well an N-D and other Sets. Please refer to the VisAD Java
Component Library Developers Guide for more details.

The Range

Ok, we’ve already got some data, and we could create a display and add the cube to
it. But most certainly you are trying to visualize how some quantity (or quantities), a
RealType (or a RealTupleType) vary according to some other quantity. Like in maths,
you have one or more dependent variables as functions of independent variables. What
we do in VisAD is precisely that. We create the independent variable(s), create the
dependent variable(s) and then use an object to establish the mathematical function
between them. In VisAD one often refers to the independent variables as "domain"
and to the dependent variables as "range". So far, we’ve created the domain. Our
domain is the cube given by the RealTupleType and its set is the Linear3DSet, which
we call "domain set". So what about the range? We assume we are measuring the
temperature inside the cube. We need to create the corresponding RealType:

RealType temperature = new RealType ("Temperature") ;

22

Of course you might want to measure temperature and some other quantity, in
which case you’d need another RealType, and you’d have a range composed by a
RealTupleType. We will do this later in the tutorial, for now we want to show how
you create a function:

cubeTempFunc = new FunctionType (cubeTuple , temperature) ;

That is, "temperature" is a function of height, width and length. You create a
FunctionType with two MathTypes (remember, MathType is the superclass of RealTupleType,
RealTupleType, FunctionType, etc). The first MathType is the domain, and the sec-
ond, the range.
The FunctionType creates the relation between the MathTypes of the domain and

the range, but it says nothing about "the data" itself. Furthermore, how do you link
the cube given by the Linear3DSet, with the function given by the FunctionType,
and those with the "temperature" values, which you are measuring and/or computing?
The answer is a Field object, or more especifically a FlatField.
A FlatField is a subclass of Field, which is a subclass of Function (but not of

FunctionType!), which is a subclass of Data, and thus a Visad data object. A Field
represents a mathematical function. Inside it there’s information about the domain,
the domain set, the range and the range values. A FlatField is an extension of Field,
and has been designed with computational efficiency in mind. Inside a FlatField you
pack the FunctionType, the domain Set and then you "feed" it with with range
("temperature") values. The FlatField has quite a few useful methods and in the
first few tutorial chapters we’re going to make good use of it. A FlatField is created
with:

FlatField tempInCube_ff = new FlatField (cubeTempFunc , cubeSet)

That is, the first parameter is the FunctionType and the second parameter is the
domain Set. We have called our FlatField tempInCubeFF, note the "ff" at the end
to denote its type. Of course, you don’t need to do so, but it’ll be done throughout
this tutorial. As said, the FlatField holds not only the "temperature" values you’ll
provide, it also includes the FunctionType, with its domain and range types, and the
domain Set. That is, quite a few things to fit in a short name, so therefore the "ff"
at the end. In the tutorial, whenever you come across an object with "ff" at the end,
remember, it’s a FlatField and expect a lot from it.
Well, we are almost done with the creation of a not-so-simple data object. The

only two things missing is to feed the FlatField with actual "temperature" values
and to add the whole data to a display. Note that the FlatField above will be
waiting for an array of floats (or doubles) with the shape float[range_dimension][

23

number_of_samples]. The first dimension corresponds to the dimension of the range,
in our case it’s 1, as we have "temperature", only. The second dimension is the total
number of temperature values, which is 10 x 20 x 6, as given by the domain Set. You’d
set the values with a call

FlatField . setSamples (f l o a t [] [] temperValues) ;

Now we’ve got some complex data ready to be displayed, so we move on to consider
the display of data.

3.2.2. Displaying Data
The first question you might ask yourself is whether to use of a 2D or of a 3D display.
Luckily, in VisAD the choice of display is independent of the data. Whether it makes
sense to use a 2D or 3D is up to you to decide. There are a variety of displays
constructors and display renderers. In the tutorial, we will come across some of them.
For now it’s important to understand how VisAD displays data.
When building up the data structure, we identified basic quantities as RealTypes.

When thinking of the cube of the previous example, it would be obvious to map each
one of the dimensions to an axis of a 3D display. The object responsible for the
mapping is a ScalarMap. When creating a ScalarMap you consider two things:

1. Which ScalarType will you map and

2. Where will you map it to.

The first point is clear, but remember that ScalarType is the superclass of RealType
and of TextType. The "where will you map it to" implies not only the axes of a display,
but also color, animation, iso-contours, text, shape and many others. These are known
in VisAD as DisplayRealTypes, and they define how RealTypes are to be displayed.
Let us look closer at such a ScalarMap by constructing a few:

ScalarMap heightZMap = new ScalarMap (height , Display . ZAxis) ;
ScalarMap widthXMap = new ScalarMap (width , Display . XAxis) ;
ScalarMap lengthYMap = new ScalarMap (length , Display . YAxis) ;

This should be pretty clear: we are mapping "height" to the z-axis, width to the
x-axis and length to the y-axis. We haven’t said anything yet about the display. If
the display has such a map, then it’ll map "height" data to the z-axis. Suppose we do
the same for the other cube dimensions, then we have the whole cube in a 3D display.
To color the cube according to temperature values, you’d do

24

ScalarMap temperRgbMap = new ScalarMap (temperature , Display . RGB) ;

and you’d obtain a cube colored according to the "temperature" values. (The actual
color table is predefined, but you can redefine it. See Section 4 for some examples of
colored cubes und user-defined color-tables.)
ScalarMaps have a boring but helpful relative, the ConstantMaps. ConstantMaps

extend ScalarMaps, but take no ScalarType as a parameter in the constructor. In-
stead, they take a (constant) Java double or a VisAD Real (Real is a subclass of
Data). With a ConstantMap map you may add a constant shade of red, say 40

ConstantMap constRedMap = new ScalarMap (0 . 4 , Display . Red) ;

or you can put some data at some constant place in a display and/or give it a
constant color. For example, you could give a constant green color to a line, or put a
surface at some z-value.
After choosing how to depict your data by choosing the right types of ScalarMaps

and ConstantMaps, you add them to the display (you will see in the next section how
this is done).
Having added all ScalarMaps of your choice, you have to tell the display which data

to draw. For that, you use a DataReference. You feed a DataReference with the data
you want, like, for example, with a FlatField, and then you add the DataReference
to the display. At this step, you might add the data with an array of ConstantMaps,
to give your data some different properties.

3.2.3. Interacting with Data
This step might not seem so important as the previous two, but, in fact, you only reach
the desired usability of your application with a proper user interface. Apart from the
standard Java UI, which you can use in your application, VisAD provides a number
of special UIs. Interaction in VisAD generally occurs with the help of a Control.
Control is a class which is implemented by GraphicsModeControl, ColorControl,
AnimationControl and others. In particular, you’ll find that most VisAD Controls
have a corresponding UI. The choice of UIs depends not only on your data, but also
on how interactive your application can and should be. One thing to notice, though,
is that in VisAD the display is the main user interface. Not only does it provide the
user with information about the data, but it supports interactive rotation, pan and
zoom. It can also have, for example, DirectManipulationRenderers, so that user
input occurs directly through the display. By using widgets not only can you change
data depiction, but you can also change data values. This might trigger calculations,
which, in turn, might change data. As we move along the tutorial, we’ll get to know

25

the VisAD widgets.

3.2.4. Summary
Before we start with our first VisAD application, we recap the main steps. When build-
ing the data structure, identify the basic quantities as ScalarTypes, that is RealTypes
or TextTypes. Pack RealTypes in a RealTupleType. Use a Set (1D, 2D, 3D or N-D
and Linear, Gridded, Integer, Irregular or other) as the domain Set. Build the range
with the RealTypes identified as the independent variables. If there are more than one
RealType, create a RealTupleType for the range. Create a FunctionType with the
domain and the range. Create a FlatField based on the function and on the domain
set. Put the range values in the FlatField.
For visualization, start with a display. Create the ScalarMaps you find necessary

and add them to the display. Create a DataReference, feed it with data, add it to
display. The display will be added to a Java Frame or other Java Component to be
shown.
Use Controls to set parameters and customize your display. Refine your application

with widgets.
We are then ready to write our first VisAD application, which will have a very simple

MathType (just a RealType, called height, as a function of the RealType time, that is a
FunctionType (time -> height)), as well as a Field and a Set, a DataReference
and a Display.

3.3. Our First VisAD Application
In this section we will plot a simple function, height = f(time), whose MathType reads:

(time -> height)

We assume time to be our independent variable and are given some values for
height. We define time and height as RealTypes. Data for time is organized in an
Integer1DSet (a subclass of Set, which is a subclass of Data). This Set is our domain
Set. As the name says, this Set is a one-dimensional set of (consecutive) integers. We
will also need a FunctionType (function our height = f(time)), a FlatField (another
Data object), a DataReference (to link our Data to the display), a 2D display and
two ScalarMaps to be included in the display.
ScalarMaps are objects which determine how Data objects are depicted. They define

mappings from RealTypes (such as our time and height) to DisplayRealTypes, which
are, for example, the x-, y- and z-axis, or the color components, or animation, etc. We
will then use a Java Frame to show our display.

26

Listing 3.1: The source code of our first VisAD Application

// Import needed c l a s s e s

import visad . ∗ ;
import visad . java2d . DisplayImplJ2D ;
import java . rmi . RemoteException ;
import java . awt . ∗ ;
import javax . swing . ∗ ;

/∗∗
10 Java Tutor i a l Example 1_01

The f i r s t t u t o r i a l example . A func t i on he ight = f (time) , r ep re s ented by the
MathType (time −> height) , i s p l o t t ed as a s imple l i n e .
t h i s func t i on i s a c tua l l y the parabola he ight = 45 − 5 ∗ time ^2 ,
We have the he ight va lues and time i s the cont inuous independent var i ab l e , ←↩

with
data va lues g iven by a Set .
Run program with " java P1_01"
∗/

pub l i c c l a s s P1_01 {
20 // Dec lare v a r i a b l e s

// The quan t i t i e s to be d i sp layed in x− and y−ax i s
p r i va t e RealType time , height ;

// The func t i on he ight = f (time) , r ep re s ented by (time −> height)
p r i va t e FunctionType func_time_height ;

// Our Data va lues f o r time are r epre s ented by the s e t
p r i va t e Set time_set ;

30 // The Data c l a s s F latF ie ld , which w i l l hold time and he ight data .
// time data are imp l i c i t e l y g iven by the Set time_set
p r i va t e FlatField vals_ff ;

// The DataReference from the data to d i sp l ay
p r i va t e DataReferenceImpl data_ref ;

// The 2D disp lay , and i t s the maps
p r i va t e DisplayImpl display ;
p r i va t e ScalarMap timeMap , heightMap ;

40
// The cons t ruc to r f o r our example c l a s s
pub l i c P1_01 (String [] args)

throws RemoteException , VisADException {

// Create the quan t i t i e s
// Use RealType (St r ing name)
time = new RealType (" time") ;
height = new RealType (" he ight ") ;

50 // Create a FunctionType , that i s the c l a s s which r ep r e s en t s our ←↩
f unc t i on

// This i s the MathType (time −> height)
// Use FunctionType (MathType domain , MathType range)
func_time_height = new FunctionType (time , height) ;

// Create the time_set , with 5 i n t e g e r values , ranging from 0 to 4 .
// That means , that there should be 5 va lues f o r he ight .

27

// Use Integer1DSet (MathType type , i n t l ength)
time_set = new Integer1DSet (time , 5) ;

60
// Those are our ac tua l he ight va lues
// Note the dimensions o f the array :
// f l o a t [number_of_range_components] [number_of_range_samples]
f l o a t [] [] h_vals = new f l o a t [] [] { { 0 . 0 f , 33 .75 f , 45 .0 f , 33 .75 f , 0 . 0 f , } } ;

// Create a FlatF ie ld , that i s the c l a s s f o r the samples
// Use F la tF i e ld (FunctionType type , Set domain_set)
vals_ff = new FlatField (func_time_height , time_set) ;

70 // and put the he ight va lues above in i t
vals_ff . setSamples (h_vals) ;

// Create Display and i t s maps A 2D d i sp l ay
display = new DisplayImplJ2D (" d i sp l ay1 ") ;

// Create the ScalarMaps : quant i ty time i s to be d i sp layed along x−ax i s
// and he ight along y−ax i s
// Use ScalarMap (ScalarType s ca l a r , DisplayRealType d i sp l ay_sca l a r)
timeMap = new ScalarMap (time , Display . XAxis) ;

80 heightMap = new ScalarMap (height , Display . YAxis) ;

// Add maps to d i sp l ay
display . addMap (timeMap) ;
display . addMap (heightMap) ;

// Create a data r e f e r e n c e and s e t the F la tF i e ld as our data
data_ref = new DataReferenceImpl (" data_ref ") ;
data_ref . setData (vals_ff) ;

90 // Add r e f e r e n c e to d i sp l ay
display . addReference (data_ref) ;

// Create app l i c a t i on window , put d i sp l ay in to i t
JFrame jframe = new JFrame ("My f i r s t VisAD app l i c a t i on ") ;
jframe . getContentPane () . add (display . getComponent ()) ;

// Set window s i z e and make i t v i s i b l e
jframe . setSize (300 , 300) ;
jframe . setVisible (t rue) ;

100 }

pub l i c s t a t i c void main (String [] args)
throws RemoteException , VisADException {

new P1_01 (args) ;
}

}

The source code is available here.
By pressing and dragging with the left mouse button on the display you can move

the graph around. By shift-clicking and moving the mouse up and down you can zoom
in and out. Pressing and dragging the middle mouse button (on two-button mouse
emulated by simultaneously clicking both buttons) shows a cross cursor that moves
with the mouse. The values of the RealTypes at the cursor’s position are shown on

28

http://www.ssec.wisc.edu/~billh/tutorial/s1/P1_01.java

Figure 3.1.: If you compile the source code with javac P1_01.java and run with java
tutorial.s1.P1_01 you should be able to see the this window

29

the upper left corner of the display.
In the following section we will look further into 2D graphs and show how to control

color, axes properties, and show how a different MathType structure can lead to a
different rendering.

30

4. The Basics

4.1. Drawing scales and using units for RealType
In this example, we draw scales and both x- and y-axis. The example P2_01 is almost
the same as the previous example. This time we define our RealTypes time and height
with units:

time = new RealType (" time" , SI . second , nu l l) ;

and

height = new RealType (" he ight " , SI . meter , nu l l) ;

The first argument in the constructor is the name (a Java String) of the RealType.
This name will by used to label the axes. You can get the name of a RealType with the
method RealType.getName(). The method RealType.getRealTypebyName(String
name) will return the RealType whose name is "name". Note that two RealTypes
are equal if their names are equal. The second argument is the unit of the RealType.
VisAD defines all SI units (ampere, candela, kelvin, kilogram, meter, second, mole and
radian) and provides methods for defining your own units.
In section 2.7 we will create a new unit. By the way, you can get a RealType’s unit

with the method RealType.getDefaultUnit(). The third argument in the construc-
tor is the default set of the RealType. We shall ignore the set for the time being. The
next addition we make to the first example is the call

GraphicsModeControl dispGMC = (GraphicsModeControl) display .←↩
getGraphicsModeControl () ;

that defines the variable dispGMC as display’s GraphicsModeControl, and the sub-
sequent call

dispGMC . setScaleEnable (t rue) ;

which specifies that scales should be drawn.

31

Figure 4.1.: Running program P2_01 generates a window like the shown. Note that
the axes are now labelled, and the cursor’s position (time and height) is
correctly given in seconds and meters.

32

4.2. Scaling axes
You may have noticed that both axes were automatically scaled. In this section we will
show how to manually scale the axes. Before we do that, we’ll make another change in
our program. We shall now use a different Set for the RealType time. In the previous
examples, time Data was given by an Integer1DSet, the time_set. Now time_set
will be a Linear1DSet. Note the arguments that this Set takes.

time_set = new Linear1DSet (time , −3.0 , 3 . 0 , 5) ;

We still use the same 5 height values, but now the parabola is correctly placed in
the graph, that means time doesn’t range from 0 to 4, because we use an adequate
Set. Note that the parabola is given by height = 45 − 5 · time2. The Integer1DSet
was used initially because we were not interested in the mathematical correctness, but
only in having a set of 5 values.
After adding the heightMap to the display, we scale the y-axis (remember, heightMap

has YAxis as DisplayRealType) with

heightMap . setRange (0 . 0 , 50 . 0) ;

The figure 4.2 is a screen shot of the example P2_02.

4.3. Plotting points by using a different MathType
We will now use a different MathType to organize our data in a different way, and
see how the data structure gets depicted in a coherent way. Note that our previous
MathType indicates a continuous function. Our new MathType, organized as

(index -> (time, height))

suggests, on the other hand, a set of (time, height) points, which are indexed by an
Integer1DSet (index_set). The difference is not a trivial one. A continuous line like
that of the previous example might represent the theoretical values of a continuous
function and therefore is plotted as such. The latter MathType might represent a set of
values from an experiment which should, therefore, be plotted disconnected. As said,
we are going to use an Integer1DSet for index. In order to organize time and height,
we will use a Tuple:

pr i va t e RealTupleType t_h_tuple ;
t_h_tuple = new RealTupleType (time , height) ;

33

Figure 4.2.: Note that the y-axis is now scaled from 0 to 50.

34

The FunctionType now becomes:

func_i_tuple = new FunctionType (index , t_h_tuple) ;

And the FlatField is changed to include this:

vals_ff = new FlatField (func_i_tuple , index_set) ;
vals_ff . setSamples (point_vals) ;

The x-axis and the y-axis will be arbitrarily rescaled in the range from -4 to 4 and
-10 to 50, respectively, using setRange().
The code for the complete example 2_03 is as follows:

Listing 4.1: The source code of our VisAD Example Application P2-03

// Import needed c l a s s e s

import visad . ∗ ;
import visad . java2d . DisplayImplJ2D ;
import java . rmi . RemoteException ;
import java . awt . ∗ ;
import javax . swing . ∗ ;

/∗∗
10 VisAD Tutor i a l example 2_03

Data are organ ized as MathType (index −> (time , he ight)) and
r ep r e s en t some po in t s from the parabola o f the prev ious example
Data are indexed (time , he ight) po in t s and get dep ic ted as such .
Run program with java P2_03
∗/
pub l i c c l a s s P2_03 {

// Declare v a r i a b l e s
// The quan t i t i e s to be d i sp layed in x− and y−axes : time and height , ←↩

r e s p e c t i v e l y
// Our index i s a l o s a RealType

20 p r i va t e RealType time , height , index ;

// A Tuple , to pack time and he ight toge the r
p r i va t e RealTupleType t_h_tuple ;

// The func t i on (time (i) , he ight (i)) , where i = index ,
// repre s ented by (index −> (time , he ight))
// (time , he ight) are a Tuple , so we have a FunctionType
// from index to a tup l e
p r i va t e FunctionType func_i_tuple ;

30
// Our Data values , the points , are now indexed by the Set
p r i va t e Set index_set ;

// The Data c l a s s F latF ie ld , which w i l l hold time and he ight data .
// time data are imp l i c i t e l y g iven by the Set time_set
p r i va t e FlatField vals_ff ;

35

// The DataReference from the data to d i sp l ay
p r i va t e DataReferenceImpl data_ref ;

40
// The 2D disp lay , and i t s the maps
p r i va t e DisplayImpl display ;
p r i va t e ScalarMap timeMap , heightMap ;

pub l i c P2_03 (String [] args)
throws RemoteException , VisADException

{
// Create the quan t i t i e s
// x and y are measured in SI meters

50 // Use RealType (St r ing name , Unit u , Set s e t) , s e t i s nu l l
time = new RealType (" time" , SI . second , nu l l) ;
height = new RealType (" he ight " , SI . meter , nu l l) ;

// Organize time and he ight in a Tuple
t_h_tuple = new RealTupleType (time , height) ;

// Index has no unit , j u s t a name
index = new RealType (" index ") ;

60 // Create a FunctionType (index −> (time , he ight))
// Use FunctionType (MathType domain , MathType range)
func_i_tuple = new FunctionType (index , t_h_tuple) ;

// Create the x_set , with 5 values , but t h i s time us ing a
// Integer1DSet (MathType type , i n t l ength)
index_set = new Integer1DSet (index , 5) ;

// These are our ac tua l data va lues f o r time and he ight
// Note that these va lues correspond to the parabola o f the

70 // prev ious examples . The y (he ight) va lues are the same , but the x (←↩
time)

// are now given given .
f l o a t [] [] point_vals = new f l o a t [] [] {

{−3.0f , −1.5f , 0 . 0 f , 1 . 5 f , 3 . 0 f , } ,
{0 .0 f , 33 .75 f , 45 .0 f , 33 .75 f , 0 . 0 f , }

} ;

// Create a FlatF ie ld , that i s the Data c l a s s f o r the samples
// Use F la tF i e ld (FunctionType type , Set domain_set)
vals_ff = new FlatField (func_i_tuple , index_set) ;

80
// and put the he ight va lues above in i t
vals_ff . setSamples (point_vals) ;

// Create Display and i t s maps
// A 2D d i sp l ay
display = new DisplayImplJ2D (" d i sp l ay1 ") ;

// Get d i sp l ay ’ s graphic mode con t r o l and draw s c a l e s
GraphicsModeControl dispGMC = (GraphicsModeControl) display .←↩

getGraphicsModeControl () ;
90 dispGMC . setScaleEnable (t rue) ;

// Create the ScalarMaps : quant i ty time i s to be d i sp layed along XAxis
// and he ight along YAxis
// Use ScalarMap (ScalarType s ca l a r , DisplayRealType d i sp l ay_sca l a r)
timeMap = new ScalarMap (time , Display . XAxis) ;
heightMap = new ScalarMap (height , Display . YAxis) ;

36

// Add maps to d i sp l ay
display . addMap (timeMap) ;

100 display . addMap (heightMap) ;

// Sca l e heightMap . This w i l l s c a l e the y−axis , because heightMap has ←↩
DisplayRealType YAXIS

// We simply choose the range from −4 to 4 f o r the x−ax i s
// and −10.0 to 50 .0 f o r
timeMap . setRange (−4.0 , 4 . 0) ;
heightMap . setRange (−10.0 , 50 . 0) ;

// Create a data r e f e r e n c e and s e t the F la tF i e ld as our data
data_ref = new DataReferenceImpl (" data_ref ") ;

110 data_ref . setData (vals_ff) ;

// Add r e f e r e n c e to d i sp l ay
display . addReference (data_ref) ;

// Create app l i c a t i on window , put d i sp l ay in to i t
JFrame jframe = new JFrame ("VisAD Tutor i a l example 2_03") ;
jframe . getContentPane () . add (display . getComponent ()) ;

// Set window s i z e and make i t v i s i b l e
120 jframe . setSize (300 , 300) ;

jframe . setVisible (t rue) ;
}

pub l i c s t a t i c void main (String [] args)
throws RemoteException , VisADException

{
new P2_03 (args) ;

}
}

The source code is available here, you should get an result like figure 4.3.
As expected, our data consisting of a set of points was plotted as such (on some

high-resolution screens the points may be so small - a single pixel - that they are nearly
invisible). Note that if you call

dispGMC . setPointMode (t rue) ;

where dispGMC is the GraphicsModeControl you can draw all lines in a display
as points, without changing the MathType. The advantage is that you don’t need to
change the MathType, but the disadvantage is that you will only be able to draw your
data as points.

37

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_03.java

Figure 4.3.: If you compile the source and run it with java P2_03 you should be able
to see the following window.

38

4.4. Using a ConstantMap to Change Data Depiction
Attributes

In the above figure, our data were plotted as the disconnected points. On some displays
the points are so small that they are difficult to see, so you might want them larger or
you simply might want them plotted with some color. We will now change some basic
attributes of those points by using color and points ConstantMaps. This is done by
defining ConstantMaps like

ConstantMap [] pointsCMap = { new ConstantMap (1 .0 f , Display . Red) ,
new ConstantMap (0 .0 f , Display . Green) ,
new ConstantMap (0 .0 f , Display . Blue) ,
new ConstantMap (3 .50 f , Display . PointSize) } ;

Note that Display.Red is at its maximum (1.0f) and Display.PointSize de-
fines the size of the points in pixels. The change is implemented by linking this
ConstantMap[] with the display using the call:

display . addReference (data_ref , pointsCMap) ;

The source code is available here. If you compile it and run with java P2_04 you
should be able to see the figure 4.4.

4.5. Using a SelectRange Map to limit plotting and
adding two DataReferences to a display

We now combine examples 2_02 and 2_04 above to make a display that shows data
plotted as both single points and as a line. To do this we will use one display object,
but we will require two FunctionTypes, two FlatFields, and two DataReferences.
First, create a Linear1DSet to define the sampling.

i n t LENGTH = 25 ;
time_set = new Linear1DSet (time , −3.0 , 3 . 0 , LENGTH) ;

Next, in addition to func_i_tuple created in the previous example, we need to
create:

func_time_height = new FunctionType (time , height) ;

39

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_04.java

Figure 4.4.: The points are now displayed as red color-filled squares, 3 pixels on a side.

40

Now, we need to create two arrays to hold our data values, and fill them appropri-
ately:

f l o a t [] [] d_vals = time_set . getSamples (t rue) ;
f l o a t [] [] h_vals = new f l o a t [1] [LENGTH] ;

We generate values for the line with a for-loop.

f o r (i n t i = 0 ; i < LENGTH ; i++)
h_vals [0] [i] = 45 .0 f − 5 .0 f ∗ (f l o a t) (d_vals [0] [i]∗ d_vals [0] [i]) ;

This provides the data to make a curve of 25 connected points. Another new feature
in this example is the use of a ScalarMap with a SelectRange as DisplayRealType
to select the time range to be displayed. In section 2.2 we scaled the y-axis. If we had
scaled it so that our data would be outside the display box, data would still have been
displayed (but outside the box!). A ScalarMap with SelectRange as DisplayRealType
will trim data depiction, so that only the data inside the valid range will be drawn.
(You might want to combine a ScalarMap.setRange() call with a ScalarMap with
SelectRange as DisplayRealType, as the former allows you to choose the range of
the depicted RealType (thus scaling an axis) and the latter allows to choose the range
in which the RealType can be draw (values ouside the range will be cut). You can also
see section 2.11, where the difference between them should become clear.) We create
such a ScalarMap with

timeRangeMap = new ScalarMap (time , Display . SelectRange) ;

add it to a display like we would do with any other ScalarMap:

display . addMap (timeRangeMap) ;

Then we get this ScalarMap’s RangeControl

RangeControl timeRangeControl = (RangeControl) timeRangeMap . getControl () ;

To make the data displayed or visible in the range from -2 to 4, define the range

f l o a t [] timeRange = { −2.0f , 4 . 0 f } ;

and finally implement the changes by calling

41

timeRangeControl . setRange (timeRange) ;

The complete source code for this example is available here. If you compile it and
run with java P2_05 you should be able to see the window 4.5

4.6. Extending the MathType and using Display.RGB
In the previous examples, our line had the following MathType

(time -> height)

We mapped time to XAxis and height to YAxis. We will now extend this MathType
to

(time -> (height, speed))

where height and speed are RealTypes and form a Tuple:

h_s_tuple = new RealTupleType(height, speed);

Note that speed is the first derivative of height with respect to time. (You might like
to know that the interface Function (subinterface of Data) actually includes a method
to calculate the derivative of a Function with respect to a RealType. Remember
that in VisAD a FlatField represents a mathematical function. It overrides the
Data.derivative()method, with which you can calculate the derivative of a function,
that is of a FlatField, with respect to a quantity, that is a RealType. But in this
example we shall calculate the derivative in a for-loop. See section 4_07 for how to
use Data.derivative().) Our FunctionType is now a function

func_t_tuple = new FunctionType(time, h_s_tuple);

Note that the array which will hold the height and speed values is now dimensioned
like float[number_of_range_components][number_of_range_samples], that is
float[2][LENGTH]:

float[][] h_s_vals = new float[2][LENGTH];

We compute the values for height and speed with for-loop:

f o r (i n t i = 0 ; i < LENGTH ; i++){

// he ight va lues . . .
h_s_vals [0] [i] = 45 .0 f − 5 .0 f ∗ (f l o a t) (t_vals [0] [i]∗ t_vals [0] [i]) ;

// . . . and speed va lues : the d e r i v a t i v e o f the above func t i on
h_s_vals [1] [i] = − 10 .0 f ∗ (f l o a t) t_vals [0] [i] ;
}

42

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_05.java

Figure 4.5.: Note that data outside the range from -2 to 4 is not shown. (Compare
with the previous figures, in which both line and points existed in the
range -3 to 3.) Note too the smoother curve, indicating the use of more
data (for the line). Of course, the plots of the point value data and the
data describing the line are completely independent (try changing their
values in the code).

43

We create the ScalarMap

speedRGBMap = new ScalarMap (speed , Display . RGB) ;

to display speed in RGB color and then we add this ScalarMap to the display. The
source code for this example is available here. The figure 4.6 is a screen shot of this
program.

4.7. New Units, and changing line width with
GraphicsModeControl

This example is almost the same as the previous example. This first little change
regards the units of speed. We declare our new Unit with

Unit mps ;

define it with

mps = SI . meter . divide (SI . second) ;

and refine speed with the new unit:

speed = new RealType (" speed" , mps , nu l l) ;

That is, our new Unit is represented by mps and is simply SI.meter divided by
SI.second, or simply meters per second. We define speed’s units as mps. We also
invert the ScalarMaps and map height to RGB and speed to YAxis, as shown below:

speedYMap = new ScalarMap (speed , Display . YAxis) ;

and

heightRGBMap = new ScalarMap (height , Display . RGB) ;

Just another little change is the call

dispGMC . setLineWidth (3 .0 f) ;

44

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_06.java

Figure 4.6.: Note that speed is signed, so positive (upward) values are colored red
and negative (downward) values are colored blue. The color look-up table
ranges from blue, through green to red. The color table is automatically
adjusted to the RealType it’s attached to, so that the minimum value of
the RealType is mapped to the minimum value of the color table (blue)
and the maximum value of the RealType corresponds to that of the color
table (red). Intermediate values are linearly interpolated. In section 3 we
will learn how to color a RealType using other DisplayRealTypes (like
Red, Green and Blue, rather than RGB, which is attached to a pseudo
color look-up table). In section 4 we will define and use a new color table.

45

Figure 4.7.: Note that speed is displayed in the y-axis, and the values for time and
speed at the cursor’s location are correctly given in the proper units. Re-
member, not speed but height is mapped to color, so now we see red near
time = zero, where the height is at the maximum, and blue at both ends
where heights are near the minimum.

which results in thicker lines for the display. The source code for this example is
available here and figure 4.7 is a screen shot of the program.
You might want to know, that the method GraphicsModeControl.setPointWidth(

float size) changes the point size of a display (but is over-ridden by ConstantMaps
to Display.PointSize, as used in section 2.4). Although the GraphicsModeControl
provides you extensive controls over data depiction, VisAD provides a user interface
for the it. In order to make full use of this interface, we shall only introduce it in
section 3.8.

46

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_07.java

4.8. Plotting two quantities on same axis
In this section we restructure the MathType of the previous program

(time -> (height, speed))

as

(time -> height)

and

(time -> speed)

We will need a FunctionType for each of the above functions

func_t_h = new FunctionType (time , height) ;

and

func_t_s = new FunctionType (time , speed) ;

as well as FlatFields and DataReferences. The RealTypes height and speed are
both mapped to y-axis, and speed’s DataReference include a yellow ConstantMap, to
distinguish speed from height. The speed’s axis is equally colored yellow, but with
the call ScalarMap.setScaleColor(float[] speedColor). The complete code is
available here. The program generates a window like the figure 4.8.
You might also want to know that is possible to prevent an extra axis to be drawn,

even though you might have added a corresponding ScalarMap (with XAxis, YAxis or
ZAxis) to the display. This is achieved by calling

ScalarMap . setScaleEnable (f a l s e) ;

The code for this example already includes such a call. Just uncomment the line with
speedYMap.setScaleEnable(false) to prevent the speed axis from being drawn.

4.9. Using a Gridded1DSet
So far we have used Integer1DSet and Linear1DSet, as our time (x-axis) domain.
Both sets are finite arithmetic progression of values. Your data might not be in such
a progression or you might, for whatever reason, want to use some values which are

47

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_08.java

Figure 4.8.

48

Figure 4.9.

more densely sampled in some region as it is in others. Our next example considers
such a case.
We have a Gaussian distribution curve, but we are more concerned with the region

around the maximum. We have our points concentrated around this region, and only
a few samples at the base of the curve. Our Gridded1DSet is defined as follows

x_set = new Gridded1DSet (x , x_vals , LENGTH) ;

where x is the quantity to be displayed on the x-axis, x_vals is an array float[1][LENGTH]
with the x values and LENGTH is simply the number of values. The corresponding
values for y are given further down in the program. We also have a ScalarMap with
RealType y mapped to Display.RGB added to our display. This will color the curve
according to y. The source code for this example is available here. The figure 4.9 is a
screen shot of this program.
Please note the varying sampling distances, indicating the use of the Gridded1DSet.

49

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_09.java

4.10. Using a RangeWidget
In this section we introduce the second VisAD User Interface (the first VisAD User
Interface is a display!). We saw in section 2.2 how we can scale axes by calling
ScalarMap.setRange(double low, double hi). Although this method may suf-
fice, in some cases you will want to be able to interactively change an axis range. To do
this VisAD provides a user interface, the RangeWidget. We shall use example program
P2_05 and add a RangeWidget to it.
To create a RangeWidget we simply declare one:

pr i va t e RangeWidget ranWid ;

Note that we have added the import statement

import visad . util . ∗ ;

In the directory visad/util you will find other useful user interfaces.
We actually create such a widget with

ranWid = new RangeWidget (timeMap) ;

Remeber, timeMap is the ScalarMap which of the RealType time and it’s mapped
to the x-axis. The final step it to add the widget to the window. You can see the code
here. Running the program with java tutorial.s2.P2_10 (and typing in the same
range values given below) you should get a window like figure 4.10.
Note the range of the RealType time is between -2 and 4 (the curve only goes to 3

because our data, that is the domain set, is only defined between -3 and 3). By typing
in a value in the text field and then pressing the "enter" key the display gets redrawn
with the new range. You should run the example and try the widget out!
You should try to create a RangeWidget for the y-axis. You’d only need to create a

widget for the heightMap and then add it to window.

4.11. Using a SelectRangeWidget
In this section we introduce the SelectRangeWidget, which allows you to select the
range in which data will be drawn. In section 2.5 we used created a ScalarMap

timeRangeMap = new ScalarMap (time , Display . SelectRange) ;

50

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_10.java

Figure 4.10.

51

added it to the display, then we got its RangeControl

RangeControl timeRangeControl = (RangeControl) timeRangeMap . getControl () ;

defined a range

f l o a t [] timeRange = { −2.0f , 4 . 0 f } ;

and finally implemented the changes by calling

timeRangeControl . setRange (timeRange) ;

This is fine in case that the selected range doesn’t (or shouldn’t) change during
runtime. To interactively change Display.SelectRange bounds, VisAD provides the
SelectRangeWidget. We shall use example program P2_10 to show this widget. In
the program, we declare a SelectRangeWidget

SelectRangeWidget selRanWid ;

We also need a map like

timeRangeMap = new ScalarMap (time , Display . SelectRange) ;

which determines that the RealType time will have a range which can be selected,
as done in section 2.5. To create the widget we call

selRanWid = new SelectRangeWidget (timeRangeMap) ;

We then add this widget to the window as we have done with the previous widget.
You can see the complete code here. Running the program with java tutorial.s2.P2_11you
should get a window with a display and with the two widgets. See the screenshot 4.11.
Click and drag one of the yellow triangles to change one of the boundaries. Click and

drag in the middle of the range to move both ends. If you are confused with the two
widgets, then we urge you to run the example and try them out. The RangeWidget is
responsible for "scaling the axis", whereas the SelectRangeWidget is responsible for
selecting the range in which data can be drawn. We said in section 2.5 that you might
want to combine both together in an application. Indeed, if by scaling the axis data
gets drawn outside the display, you might use the SelectRangeWidget to avoid that.
In the next section we make use of 2D Sets, and introduce images.

52

http://www.ssec.wisc.edu/~billh/tutorial/s2/P2_11.java

Figure 4.11.

53

5. Two-dimensional Sets

In this section we shall consider functions like z = f(x,y). These are represented by
the MathType

((x, y) -> range)

The data for the quantities x and y will be given by a two-dimensional set. The
first example is analog to our very first example (see sections 1.2 and 2.1), but with
a two-dimensional domain. Our range might be interpreted as a surface (if range is
composed of one RealType; range may of course be a RealTupleType) and it plays
the role of the dependent variable. We shall, however start off with a 2D-display and
shall map range to color.

5.1. Handling a 2-D array of data: using an
Integer2DSet

Suppose we have a function represented by the MathType

((row, column) -> pixel)

where row and column, and pixel are RealTypes. We organize (row, column) in a
RealTupleType like the following

domain_tuple = new RealTupleType (row , column)

Our function, that is the pixel values for each row and column would be

func_dom_pix = new FunctionType (domain_tuple , pixel) ;

To define integer domain values (for the "domain_tuple") we use the class Integer2DSet:

domain_set = new Integer2DSet (domain_tuple , NROWS , NCOLS) ;

54

This means, define the domain by constructing a 2-dimensional set with values
0, 1, ..., NROWS − 1× 0, 1, ..., NCOLS − 1. Note that these are integer values only.
We assume we have someNROWS×NCOLS pixel values in an array float[NROWS][NCOLS]

(pixel values might be Java doubles, too). It is important to observe that the pixel
samples are in raster order, with component values for the first dimension changing
fastest than those for the second dimension. So, although the pixel values are in an
array float[NROWS][NCOLS], they will be stored in a FlatField like float[1][NROWS
* NCOLS]. One reason for doing this is computational efficiency. Suppose we have an
array with 6 rows and 5 columns, like

pixel_vals = {{0 , 6 , 12 , 18 , 24} ,
{1 , 7 , 12 , 19 , 25} ,
{2 , 8 , 14 , 20 , 26} ,
{3 , 9 , 15 , 21 , 27} ,
{4 , 10 , 16 , 22 , 28} ,
{5 , 11 , 17 , 23 , 29} } ;

then these values should be ordered as the values above indicate.
This can be done by creating a "linear" array float[1][number_of_samples] (here

called "flat_samples"), and then by putting the original values in this array. A way
of doing this is can be seen in the following loops:

f o r (i n t c = 0 ; c < NCOLS ; c++)
f o r (i n t r = 0 ; r < NROWS ; r++)

flat_samples [0] [c ∗ NROWS + r] = pixel_vals [r] [c] ;

You can see how this is done in the code of example P3_01, as follows:

// Import needed c l a s s e s
import visad . ∗ ;
import visad . java2d . DisplayImplJ2D ;
import java . rmi . RemoteException ;
import javax . swing . ∗ ;

/∗∗
VisAD Tutor i a l example 3_01
A func t i on pixe l_value = f (row , column)

10 with MathType ((row , column) −> p i x e l) i s p l o t t ed
The domain s e t i s an Integer1DSet
Run program with " java t u t o r i a l . s3 . P3_01"
∗/
pub l i c c l a s s P3_01 {

// Declare v a r i a b l e s

// The quan t i t i e s to be d i sp layed in x− and y−axes : row and column
// The quant i ty p i x e l w i l l be mapped to RGB co l o r
p r i va t e RealType row , column , pixel ;

20
// A Tuple , to pack row and column together , as the domain
p r i va t e RealTupleType domain_tuple ;

55

// The func t i on ((row , column) −> p i x e l)
// That i s , (domain_tuple −> p i x e l)
p r i va t e FunctionType func_dom_pix ;

// Our Data va lues f o r the domain are r epre s ented by the Set
p r i va t e Set domain_set ;

30
// The Data c l a s s F l a tF i e ld
p r i va t e FlatField vals_ff ;

// The DataReference from data to d i sp l ay
p r i va t e DataReferenceImpl data_ref ;

// The 2D disp lay , and i t s the maps
p r i va t e DisplayImpl display ;
p r i va t e ScalarMap rowMap , colMap , pixMap ;

40
pub l i c P3_01 (String [] args)

throws RemoteException , VisADException {
// Create the quan t i t i e s
// Use RealType (St r ing name) ;
row = new RealType ("ROW") ;
column = new RealType ("COLUMN") ;
domain_tuple = new RealTupleType (row , column) ;
pixel = new RealType ("PIXEL") ;

50 // Create a FunctionType (domain_tuple −> p i x e l)
// Use FunctionType (MathType domain , MathType range)
func_dom_pix = new FunctionType (domain_tuple , pixel) ;

// Create the domain Set , with 5 columns and 6 rows , us ing an
// Integer2DSet (MathType type , i n t lengthX , lengthY)
in t NCOLS = 5 ;
i n t NROWS = 6 ;
domain_set = new Integer2DSet (domain_tuple , NROWS , NCOLS) ;

60 // Our p i x e l values , g iven as a f l o a t [6] [5] array
f l o a t [] [] pixel_vals = new f l o a t [] [] {

{0 , 6 , 12 , 18 , 24} ,
{1 , 7 , 12 , 19 , 25} ,
{2 , 8 , 14 , 20 , 26} ,
{3 , 9 , 15 , 21 , 27} ,
{4 , 10 , 16 , 22 , 28} ,
{5 , 11 , 17 , 23 , 29}

} ;

70 // We c r ea t e another array , with the same number o f e lements o f
// p ixe l_va l s [] [] , but organ ized as f l o a t [1] [number_of_samples]
f l o a t [] [] flat_samples = new f l o a t [1] [NCOLS ∗ NROWS] ;

// . . . and then we f i l l our ’ f l a t ’ array with the o r i g i n a l va lues
// Note that the p i x e l va lues i nd i c a t e the order in which these va lues
// are s to r ed in f lat_samples
f o r (i n t c = 0 ; c < NCOLS ; c++)

f o r (i n t r = 0 ; r < NROWS ; r++)
flat_samples [0] [c ∗ NROWS + r] = pixel_vals [r] [c] ;

80
// Create a F la tF i e ld
// Use F la tF i e ld (FunctionType type , Set domain_set)
vals_ff = new FlatField (func_dom_pix , domain_set) ;

56

// . . . and put the p i x e l va lues above in to i t
vals_ff . setSamples (flat_samples) ;

// Create Display and i t s maps
// A 2D d i sp l ay

90 display = new DisplayImplJ2D (" d i sp l ay1 ") ;

// Get d i sp l ay ’ s g raph i c s mode con t r o l and draw s c a l e s
GraphicsModeControl dispGMC = (GraphicsModeControl) display .←↩

getGraphicsModeControl () ;
dispGMC . setScaleEnable (t rue) ;

// Create the ScalarMaps : column to XAxis , row to YAxis and p i x e l to RGB
// Use ScalarMap (ScalarType s ca l a r , DisplayRealType d i sp l ay_sca l a r)
colMap = new ScalarMap (column , Display . XAxis) ;
rowMap = new ScalarMap (row , Display . YAxis) ;

100 pixMap = new ScalarMap (pixel , Display . RGB) ;

// Add maps to d i sp l ay
display . addMap (colMap) ;
display . addMap (rowMap) ;
display . addMap (pixMap) ;

// Create a data r e f e r e n c e and s e t the F la tF i e ld as our data
data_ref = new DataReferenceImpl (" data_ref ") ;

110 data_ref . setData (vals_ff) ;

// Add r e f e r e n c e to d i sp l ay
display . addReference (data_ref) ;

// Create app l i c a t i on window and add d i sp l ay to window
JFrame jframe = new JFrame ("VisAD Tutor i a l example 3_01") ;
jframe . getContentPane () . add (display . getComponent ()) ;

120 // Set window s i z e and make i t v i s i b l e
jframe . setSize (300 , 300) ;
jframe . setVisible (t rue) ;

}

pub l i c s t a t i c void main (String [] args)
throws RemoteException , VisADException {

new P3_01 (args) ;
}

}

Running the program above (code available here) with "java tutorial.s3.P3_01"
generates a window like the screen 5.1.

57

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_01.java

Figure 5.1.: Note again how the samples are organized. Remember that pixel values
were mapped to RGB color. (Blue represents the smallest and red repre-
sents the largest.)

58

5.2. Continuous 2-D domain values: using a
Linear2DSet

A Linear2DSet is a product of two Linear1DSets. They represent finite arithmetic
progression of two different values. Our next example is almost like the previous
example. We shall use, however, a Linear2DSet, which allows non-integer domain
values, to define the 2-D domain set. First we rename the domain RealTypes "latitude"
and "longitude", which are usually non-integer, since "row" and "column" suggest
integer values (and an IntegerSet is indeed a sequence of consecutive integers).
In this example we shall consider the MathType

((latitude, longitude) -> temperature)

with the RealTypes latitude, longitude and temperature. Our 2-D set will have the
domain tuple:

domain_tuple = new RealTupleType (latitude , longitude) ;

Our set is

domain_set = new Linear2DSet (domain_tuple , 0 . 0 , 6 . 0 , NROWS ,
0 . 0 , 5 . 0 , NCOLS) ;

Note that we define a first and a last value for both dimensions. This sets the domain
values in NROWS (latitude) from 0.0 to 6.0 and in NCOLS (longitude) from 0.0 to
5.0. So latitude values progress like 0.0, 1.2, 2.4, 3.6, 4.8 and 6.0. Longitude values
progress from 0.0 to 5.0 in 1.25 steps. You can get those values with the method
Linear2DSet.getSamples(boolean copy). The argument "copy" will make the
method return a copy of the samples. Remember, the array is dimensioned float[
domain_dimension][NROWS * NCOLS], where domain_dimension equals 2.
If you compile the program P3_02 and run it with "java tutorial.s3.P3_02" you

should see the window 5.2.

5.3. Color components: using different
DisplayRealTypes

So far we have mapped a quantity, our dependent variable (temperature, in the pre-
vious example) to RGB color. Although you may define your own color table (see
section 4), you might achieve satisfactory results by mapping one or many quantities
to the proper DisplayRealTypes. Our next example illustrate this.

59

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_02.java

Figure 5.2.: P3-02

60

Before we change the DisplayRealType, we would like to draw attention to the
parameters "first" and "last" of the previous example. We now define our set with

domain_set = new Linear2DSet (domain_tuple , 0 . 0 , 12 . 0 , NROWS ,
0 . 0 , 5 . 0 , NCOLS) ;

The effect of changing 6.0 to 12.0 is to halve the resolution of latitude. The latitude
range will be also changed to reflect this change (see screen shot below). As we have
said, we will not map to RGB, bur instead to Display.Red, simply by defining the
ScalarMap

tempMap = new ScalarMap (temperature , Display . Red) ;

We also create two ConstantMaps

double green = 0 . 0 ;
double blue = 0 . 0 ;

greenCMap = new ConstantMap (green , Display . Green) ;
blueCMap = new ConstantMap (blue , Display . Blue) ;

and add them to the display. The reason for creating and adding these constant
maps to the display is that the default values for green and blue is 1.0. (In fact, default
values for red, green and blue are all 1.0, in order to create white graphics when color
is not explicitely specified. See examples 1.1 and 2.3.) The result of the above changes
can be seen in figure 5.3. The code is available here.
You could use Display.Cyan instead of Display.Red. This would result in a display

with colors varying from red to black (rememeber, green and blue components are zero)
like the display shown in the screenshot 5.4.
Note that the color varies from red to black. This is because in the RGB system

cyan is defined as cyan = white - red which can be rewritten in component form
(red, green, blue):

(0,1,1) = (1,1,1) - (1,0,0)

So when temperature is at the maximum (red = 1), cyan equals zero. Other sub-
tractive color components are

magenta = white - green

and

yellow = white - blue

61

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_03.java

Figure 5.3.: P3-03

62

Figure 5.4.: P3-03a

63

You can try these out, just uncomment the appropriate line in the code of example
P3_03. For example, we create the map

tempMap = new ScalarMap (temperature , Display . Green) ;

with the constant maps

double red = 0 . 0 ;
double blue = 0 . 4 ;

redCMap = new ConstantMap (green , Display . Red) ;
blueCMap = new ConstantMap (blue , Display . Blue) ;

This will set a constant level of blue across the entire display. See the screen shot
5.5. Try decreasing the level of blue to 0.0 and see the change. (Remember in the
RGB system adding red and green gives yellow, adding red and blue gives magenta and
adding blue and green gives cyan (blue-green).) Note that there’s no red, but some
blue. One might use Display.Cyan instead of Display.Red. This would in a display
with colors varying from red to black. (Actually, not quite totally black, because we
have added a ConstantMap with some green.)
You should try out some other DisplayRealTypes. Just uncomment the appropriate

lines in the code of example P3_03. Using Display.CMY (Cyan, Magenta, Yellow)
results in figure 5.6, using Display.Value (or Brightness) results in figure 5.7.
This would be similar to creating and adding the maps

tempRedMap = new ScalarMap (temperature , Display . Red) ;
tempGreenMap = new ScalarMap (temperature , Display . Green) ;
tempBlueMap = new ScalarMap (temperature , Display . Blue) ;

without any other constant maps. In the beginning of this section we said you
might achieve the coloring you want by using the right DiplayRealTypes. If you still
don’t get the colors you want, you might define your own RGB color table, and map
a RealType to it (with the DiplayRealType Display.RGB. We will do that in section
4.)

5.4. Mapping quantities to different DisplayRealTypes
In the previous section we mapped a single quantity to different types of DiplayRealTypes.
It’s also possible to map different quantities to different DisplayRealTypes. We are
going to map three quantities to the Display.Red, Display.Green and Display.Blue.
(Remember, the RGB color system is adds the color components, so we expect black

64

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_03.java
http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_03.java

Figure 5.5.: P3-03b

65

Figure 5.6.: P3-03c

66

Figure 5.7.: P3-03d

67

where the quantities are minimum, and white where they are a their maxima.) To
show this we extend our MathType from

((latitude, longitude) -> temperature)

to

((latitude, longitude) -> (temperature, pressure, precipitation))

where the range (temperature, pressure, precipitation) is organized as a RealTupleType.
We could use a constructor like

RealTupleType (RealType temperature , RealType pressure , RealType ←↩
precipitation) ;

for our RealTupleType. When the range has many RealTypes you might want to
use a handier constructor:

RealTupleType (RealType [] my_realTypes) ;

That’s how we create the RealTupleType for the range this example. We have the
RealTypes

temperature = new RealType (" temperature ") ;
pressure = new RealType (" p r e s su r e ") ;
precipitation = new RealType (" p r e c i p i t a t i o n ") ;

We create an array to RealTypes and then create the RealTupleType with this
array:

RealType [] range = new RealType [] { temperature , pressure , precipitation } ;

range_tuple = new RealTupleType (range) ;

Our function type is then

func_domain_range = new FunctionType (domain_tuple , range_tuple) ;

We use a Linear2DSet just like the one from the previous example (but with more
samples and with different "first" and "last" values). We generate temperature, pres-
sure and precipitation values in two for-loops and use some arbitrary functions (like
sine, cosine, exponential). To set the sample values in the FlatField

68

vals_ff = new FlatField (func_domain_range , domain_set) ;

we need a "flat_samples" array of floats (although it might also be an array of dou-
bles) just as float[number_of_domain_components][number_of_range_components
], which is, in our case

flat_samples = new f l o a t [3] [NCOLS ∗ NROWS] ;

This time we call FlatField.setSamples() with an extra parameter

vals_ff . setSamples (flat_samples , f a l s e) ;

The argument "false" indicates that the array should not be copied. This is very
important, since by telling the FlatField not to copy the array you might save some
memory. As promised, we map temperature to red, pressure to green and precipitation
to blue, as indicated by the following lines:

tempMap = new ScalarMap (temperature , Display . Red) ;
pressMap = new ScalarMap (pressure , Display . Green) ;
precipMap = new ScalarMap (precipitation , Display . Blue) ;

You can see the complete code here. Running the program will generate a window
like the screen shot below:
Note that temperature (red) has a maximum at the top and a minimum at the

bottom of the display. Pressure (green) has a maximum along longitude=0, and pre-
cipitation along latitude=0, both decreasing exponentially as one moves away from
their maximum. Also note how the red, green and blue values are added, creating dif-
ferent colors. It is important to realize the difference between mapping a quantity to
Display.RGB and mapping to Display.Red, Display.Green and Display.Blue. The
former makes use of a user-definable color table and the latter maps the quantitiy to
both red, green and blue, scaling these components between 0 (quantity’s minimum)
to 1.0 (quantity’s minimum) and adding them.

5.5. Using IsoContour
In the following example we consider a MathType like

((latitude , longitude) −> temperature)

69

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_04.java

Figure 5.8.: P3-04

70

Figure 5.9.: P3-05

We will use a bigger Linear2DSet and will generate some values in the code. This
is nothing really new. The (nice and) new feature of this example is the use of a new
DisplayRealType:

tempIsoMap = new ScalarMap (temperature , Display . IsoContour) ;

You might have already guessed: this ScalarMap will calculate the isocontours of
the associated RealType (in this case, temperature). The result is a display with white
isolines (the isotherms). The IsoContour ScalarMap is added to the display, as usual.
You can see the complete code here.
Running the program will generate a window like the screen shot below:
If you want to colour the isolines according to the temperature, you simpy create

and add the following map

tempRGBMap = new ScalarMap (temperature , Display . RGB) ;

71

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_05.java

Figure 5.10.: Note that the isolines are now colored according to temperature.

In the code of example P3_05 the ScalarMap above has been created but not added
to the display. Uncomment the line

display . addMap (tempRGBMap) ;

to add a RGB map, which will color the isolines like in the figure 5.10.

5.6. Controlling contour properties: using
ContourControl

In this section we get to know another of VisAD’s Control classes, the ContourControl.
Most of the code of this example is exactly like the previous. The only difference is in
the declaration and creation of a ContourControl object:

72

ContourControl isoControl = (ContourControl) tempIsoMap . getControl () ;

Note that we get the ContourControl from an IsoContour ScalarMap. Now that
we have the ContourControl in our hands, we do something useful with it. We set
the contour intervals to be "interval", to be drawn only between the minimum and
maximum values, "lowValue" and "highValue", respectively, and to start drawing the
contours at "base" value:

f l o a t interval = 0.1250 f ; // i n t e r v a l between l i n e s
f l o a t lowValue = −0.50f ; // lowest value
f l o a t highValue = 1.0 f ; // h i ghe s t value
f l o a t base = −1.0f ; // s t a r t i n g at t h i s base value

by calling the method

isoControl . setContourInterval (interval , lowValue , highValue , base) ;

While we still in control of the contours, we draw the contour labels too:

isoControl . enableLabels (t rue) ;

The result can be seen in the screen shot below. The code is available here.
Note that we have denser isolines (due to the "interval"), which are drawn from -0.5

(lowValue) to 1.0 (highValue). Also note that the base lies below the lowValue. (It’s
possible to draw dashed lines below the base.) In the figure you can also see the labels
showing the value at some isolines. Although the ContourControl provides the control
for how isolines should be depicted, you might not want to have to set those parameters
in your code. To avoid that, VisAD also provides a user interface, the ContourWidget
(please see section 4.2), which is the interface for the controls mentioned above and
for a few more. Before we carry on to combine a flat surface with the respective iso-
contours a few comments. You can also use the ContourControl to fill-in between the
contours. This is achieved by calling

isoControl . setContourFill (t rue) ;

This requires the RealType that is mapped to Display.IsoContour to be also
mapped to Display.RGB, otherwise it won’t work properly. I the next section, however,
we draw contours on top of the surface by other means.

73

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_06.java

Figure 5.11.: P3-06

74

5.7. IsoContours over image
In this section we will draw the isolines over the colored surface. You might be tempted
to think that you only need to add an IsoContour map and an RGB map, and then
you get an image with the corresponding contours on top. From section 3.5 it should
be clear that’s not what happens. The behavior of the default DataRenderers is to
render either filled colors or contours (or flow vectors or shapes or text) for a single
FlatField. So we will need another FlatField, but we can (and should) use the
same values, thus we neither need to generate values again nor do we need to copy
those values to another array (thus saving memory). Although we will be plotting the
same temperature values, as a colored image and as isocontours, we shall need another
RealType, because we must discern which of those RealTypes ("color" temperature
or "isocontour" temperature) should be mapped to which DisplayRealType. (We will
want "color" temperature to be mapped to RGB and "isocontour" temperature to be
mapped to IsoContour.) Sure we need a new FunctionType (isocontour temperature
as function of 2-D domain) and finally a new reference, for the isocontour temperature
(remeber, no need to copy the values, we shall use the same).
We start with our previous example and add the new RealType, FunctionType,

FlatField and DataReference

RealType isoTemperature ;
FunctionType func_domain_isoTemp ;
FlatField isoVals_ff ;
DataReferenceImpl iso_data_ref ;

The RealType isoTemperature is defined as

isoTemperature = new RealType (" isoTemperature " , SI . kelvin , nu l l) ;

Note that we have used the SI units kelvin, just as we have for the RealType
temperature. (This is optional. Had we defined the RealTypes without units, the
visual result would have been the same.) The FunctionType is

func_domain_isoTemp = new FunctionType (domain_tuple , isoTemperature) ;

where the domain tuple is the RealTupleType formed by latitude and longitude.
After creating an extra FlatField (for isoTemperature)

iso_vals_ff = new FlatField (func_domain_isoTemp , domain_set) ;

we use the method FlatField.getFloats(boolean copy) to get the (float) tem-

75

perature values (using copy = false in order not to copy the values).

f l o a t [] [] flat_isoVals = vals_ff . getFloats (f a l s e) ;

We then set the isocontours FlatField’s samples with

iso_vals_ff . setSamples (flat_isoVals , f a l s e) ;

Again using an argument copy = false, to avoid copying the array. Please note the
we have created a "temporary" array float[][] flat_isoVals, but just for clarity’s
sake. We could have called

iso_vals_ff . setSamples (vals_ff . getFloats (f a l s e) , f a l s e) ;

which does the same, but which is not very adequate for showing what is returned
with the call FlatField.getFloats(boolean copy). The next steps are the creation
of the ScalarMaps

tempIsoMap = new ScalarMap (isoTemperature , Display . IsoContour) ;
tempRGBMap = new ScalarMap (temperature , Display . RGB) ;

and their addition to the display, as usual. We also create a DataReference, set its
data and add to the display

iso_data_ref = new DataReferenceImpl (" iso_data_ref ") ;
iso_data_ref . setData (iso_vals_ff) ;
display . addReference (iso_data_ref) ;

The result can be seen in the screen shot below. The code is available here.
Note that the contours are drawn in white and they have the same interval, minimum

and maximum value of the previous example. If you want contour lines of a quantity,
e.g. temperature, drawn over the colored field of another quantity, e.g. pressure, than
you’d only need to set pressure’s FlatFields with pressure values (rather than copy
the values, as we’ve done). We have also drawn contour labels. Remeber, using an
array of ConstantMaps you can set the isolines colors, as shown in section 2.4. We
shall do that in the next example.

76

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_07.java

Figure 5.12.: P3-07

77

5.8. Using the GraphicsModeControlWidget
The GraphicsModeControlWidget, or GMCWidget, provides a user interface for users
to interactively change parameters of GraphicsModeControl, for example line width
as seen in section 2.7. To create GMCWidget we simply do

gmcWidget = new GMCWidget (dispGMC) ;

where dispGMC is simply the GraphicsModeControl that was already available. We
have chosen to add the GMCWidget to the same JFrame of the display (you may, of
course, create a new JFrame for it). As promised, we color the contours we a constant
(and dull) gray (75% of each red, green and blue component), by the means of an
array of ConstantMaps:

ConstantMap [] isolinesCMap = { new ConstantMap (0 .75 f , Display . Red) ,
new ConstantMap (0 .75 f , Display . Green) ,
new ConstantMap (0 .75 f , Display . Blue) } ;

and the call

display . addReference (iso_data_ref , isolinesCMap) ;

The complete code for example P3_08 is available here. Running the program with
"java tutorial.s3.P3_08" will generate a window like the screen shot below.
As you can see in the screen shot, the GMCWidget allows you to change line width and

point size as well as select whether you want scales to be drawn, whether data should
be rendered as points and whether you would like texture mapping. You should run
example program P3_08 and try it out! Note that we could have created a ScalarMap
like

isoTempRGBMap = new ScalarMap (isoTemperature , Display . RGB) ;

and have it added it to display to color the isolines. The necessary line are all
available in the code for you to try out (although you won’t see much of the isolines,
as they have exactly the same color as the background; try changing their width and/or
changing the colored field to point mode). don’t forget to call

display . addReference (iso_data_ref , nu l l) ;

instead of calling it with the ConstantMaps.

78

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_08.java

Figure 5.13.: P3-08

79

5.9. Combining color and isocontour in an extended
MathType

The following example does not have any "new" feature. It’s just a combination of
the topics treated so far. We shal extend the MathType of the previous example and
shall draw data in an "unconventional" way. Our new MathType is

((latitude , longitude) −> (altitude , temperature))

which is almost like the previous one, only that the range (altitude, temperature)
has now two RealTypes. We shall map the first RealType to IsoContour and the
other to RGB. The result should be a display with the isolines (altitude contours),
colored according to the temperature. As want to map altitude to IsoContour we
create the ScalarMap

altIsoMap = new ScalarMap (altitude , Display . IsoContour) ;

and the isolines are going to be colored according to the temperature because of the
ScalarMap

tempRGBMap = new ScalarMap (temperature , Display . RGB) ;

The two ScalarMaps are then added to the display, as usual. You can see the
complete code here. Running the program will generate a window like the screen shot
5.14:
Note that the altitude isolines are colored according to temperature. (The altitude

curve has a peak around the point (longitude, latitude) = (0, 0), otherwise the curve
tends to zero. The color pattern is just like that of the screenshot in section 3.6.) If
you want to draw the isolines over the surface, then you have to split the MathType
into two:

((latitude, longitude) -> altitude)

and

((latitude, longitude) -> temperature)

This is just what we did in section 2.7. We need two FunctionTypes as well
as two FlatFields (and two float[1][NCOLS * NROWS] samples arrays) and two
DataReferences, one for altitude and the other for temperature.

80

http://www.ssec.wisc.edu/~billh/tutorial/s3/P3_09.java

Figure 5.14.: P3-09

81

Although the screen shot above is unusual in the sense that one does not often
color contours according to a quantity other than the contour quantity itself (because
it’s a difficult thing to implement?), in VisAD you’re not bound to such "traditions".
You are free to try out different data depictions, and for that it generally suffices
to change the ScalarMaps (although not every choice of DisplayRealType is legal).
We do encourage you to try changing the ScalarMaps and DisplayRealTypes (if you
haven’t done it so far!) and for that we have provided some extra lines of code, which
you only have to uncomment, compile and run.
Looking at the screen shot again you might think it’d be better to map temperature

to color and altitude to the z-axis. Indeed it is! So by now you should be asking
yourself how you actually create a 3-D display and how you map some RealType to
the z-axis. This is now a trivial issue: just create a 3-D display (rather than a 2-D
one) and map your RealType to Display.ZAxis. We’ll do that in the next section.

82

6. Three-dimensional Displays

83

7. Animation

84

8. Interaction

85

Part II.

Other VisAD Tutorials for
Java Programmers

86

9. The VisAD DataModel Tutorial

This tutorial is about using the VisAD Data Model in Everyday Programming and
has been last updated in March, 2000

9.1. Introduction
Fundamental to VisAD is the Data Model. The Data Model is a collection of VisAD
interfaces and classes that allow the programmer to describe the data to be used in
their program: the associated units and error estimates, how is it organized, related
to other data, and so on. Some Data Model class objects contain no "real" data, but
may contain meta data (data about the data, such as the units) or show how different
data sets should be grouped for making a display.
While there are many extensions to this collection of classes and interfaces, we shall

only introduce the fundamental Data object types and illustrate the parallels with
quantities you may already be familiar with. Each will have a source code example to
allow you to experiment on your own.
If you are more comfortable with Python, then we’ve made a Python (Jython)

version of this tutorial that shows the examples in that language.

9.2. Scalars
In VisAD the values of a Scalar may be either Real which is used for numeric quan-
tities, or Text for strings of characters. In this discussion, we deal only with Real
objects.

9.2.1. Real (actual) numbers
No doubt about it, if you’ve written Java code, you are already familiar with doing
something like:

Listing 9.1: Very simple Java code example

double a , b , c ;
a = 10 . ;
b = 255 . ;

87

file:jythondata.html
file:jythondata.html

c = a + b ;
System . out . println ("sum = "+c) ;

If you are new to Java, but come from a Fortran background, then this might be
more familiar:

Listing 9.2: Very simple Java code example

REAL A , B , C
A = 10
B = 255
C = A + B
WRITE(∗ ,∗) ’ sum = ’ , C

Well, if you want to use the VisAD Data model, here’s what you’d say (the complete
program is provided):

import visad . ∗ ;

pub l i c c l a s s dataex1 {
pub l i c s t a t i c void main (String arg []) {

t ry {
Real a , b , c ;
a = new Real (1 0 .) ;
b = new Real (2 5 5 .) ;
c = (Real) a . add (b) ;

10 System . out . println ("sum = "+c) ;
} catch (Exception e) {

System . out . println (e) ; }
}

}

When you run this example, you get:

sum = 265.0

By doing this, of course, you are not going to be convinced that there is any advan-
tage to using the VisAD Data model. So, let’s explore another form of constructor for
visad.Real.

9.2.2. Estimating Errors
The form of constructor for Real Real(double value, double error) allows us to
provide an error estimate for the value. This estimate can then be propagated through
mathematical operations to provide an error estimate.

Real a , b , c ;

88

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex1.java

a = new Real (1 0 . , 1 .) ;
b = new Real (2 5 5 . , 1 0 .) ;
c = (Real) a . add (b) ;
System . out . println ("sum = "+c) ;

When you run this example, you still get:

sum = 265.0

The VisAD default for most math operations, however, is to not propagate errors,
so to make use of this, we must explicitly indicate how we want error estimate to
propagate. This is done by using an alternate signature of the add method (and all
other math operators):

Real a , b , c ;
a = new Real (1 0 . , 1 .) ;
b = new Real (2 5 5 . , 1 0 .) ;
c = (Real) a . add (b , Data . NEAREST_NEIGHBOR , Data . INDEPENDENT) ;
System . out . println ("sum = "+c) ;
System . out . println (" e r r o r o f sum i s="+c . getError () . getErrorValue ()) ;

When you run this example, you get:

sum = 265.0
error of sum is=10.04987562112089

The constants supplied to the add method are the type of interpolation and
the type of error propagation. In this simple case, the type of interpolation is
not really relevant, but as you will see later, VisAD Data types may contain finite
approximations to continuous functions and when these are combined mathematically,
may need to be resampled in order to match domains.

9.2.3. Using Units
Another powerful feature of the VisAD Data model is that it may handle units. If your
quantities are physical and have associated Units, then you might prefer to create a
VisAD MathType that explicitly defines the metadata characteristics of your quantities.
A MathType is used to define the kind of mathematical object that the Data object
approximates.

Hint 1 (MathType is mandatory) Every Data object in VisAD must have a
MathType.

89

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex2.java
http://www.ssec.wisc.edu/~tomw/visadtutor/dataex3.java

In the previous examples, a default MathType with the name Generic was implicitly
used for our Real objects. In the simplest form for dealing with Units, the constructor
for a MathType which defines Real values is:

RealType(String name, Unit u, Set s)

which allows you to assign a unique name to this MathType, a Unit for this, and
define a default Set. In practice, the Set is seldom used and should just be passed as
null in most cases. To make use of this, we modify the program to read as follows:

Real t1 , t2 , sum ;

RealType k = new RealType (" ke l v i n " , SI . kelvin , nu l l) ;
t2 = new Real (k , 2 7 3 .) ;
t1 = new Real (k , 2 5 5 .) ;

sum = (Real) t1 . add (t2) ;

System . out . println ("sum = "+sum+" "+sum . getUnit ()) ;

When you run this example, you get:

sum = 528.0 K

In this example, we were able to use an SI Unit (ampere, candela, kelvin, kilogram,
meter, second, mole, radian, steradian). Note that we constructed two variables with
the same MathType, that is the same name, Unit, and Set. The only thing that is
different is the numeric value. If you are using some other unit, VisAD provides mech-
anisms for making up Units for those. As an example, you can use the Parser.parse()
method from the visad.data.netcdf.units package to create a VisAD Unit from a
String name.

Real t1 , t2 , sum ;

Unit degC = visad . data . netcdf . units . Parser . parse ("degC") ;

RealType tc = new RealType ("tempsC" , degC , nu l l) ;
t2 = new Real (tc , 1 0 .) ;

RealType k = new RealType (" ke l v i n " , SI . kelvin , nu l l) ;
t1 = new Real (k , 2 5 5 .) ;

10
sum = (Real) t1 . add (t2) ;

System . out . println ("sum = "+sum+" "+sum . getUnit ()) ;

When you run this example, you get:

sum = 538.15 K

90

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex4.java
http://www.ssec.wisc.edu/~tomw/visadtutor/dataex5.java

Observe that although we defined the value of variable y to be in degree Celsius,
when we added the two variables together, the value of y was automatically converted
to degrees Kelvin. As long as the units are transformable, VisAD handles this. If you
attempt to combine quantities with incompatible units, an Exception is thrown. If
you’d like to get the value listing in Celsius, then change the println to read:

System.out.println("sum = "+sum.getValue(degC)+" "+degC);

When doing arithmetic on Real objects, you may need at some point to use a
constant value for something. As with all VisAD Data objects, in order to perform
these operations, the Units must all match. When you use the simplest form of
constructor for Real to define a numeric value, VisAD sets its Unit to a default value
which can then be used to do arithmetic with any other Real. To illustrate, let’s
modify the previous example to compute the average of the two temperature values:

Real t1 , t2 , average ;

Unit degC = visad . data . netcdf . units . Parser . parse ("degC") ;

RealType tc = new RealType ("tempsC" , degC , nu l l) ;
t2 = new Real (tc , 1 0 .) ;

RealType k = new RealType (" ke l v i n " , SI . kelvin , nu l l) ;
t1 = new Real (k , 2 5 5 .) ;

10
Real two = new Real (2 . 0) ;

average = (Real) t1 . add (t2) . divide (two) ;

System . out . println (" average = "+average+" "+average . getUnit ()) ;

When you run this program, you get:

average = 269.075 K

9.3. Tuples
A Tuple object contains a collection of Data objects whose number, sequence and type
are defined by the MathType of the Tuple. There is also a subclass of Tuple named
RealTuple which is a collection of Real objects, but again whose number and sequence
are fixed by the RealTupleType associated with the
RealTuple. This object is like a fixed-length vector, like (x, y, z). Contrast this

with a Java array which is a set of identical objects of that particular type. You will,
in fact, find a constructor for VisAD’s RealTuple where the data values are passed in
as an array of s.

91

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex6.java

9.3.1. Making the MathTypes
Let’s suppose we want to have a single object that keeps a collection of values of
temperature, wind speed, and time together. The approach is to first define the
MathTypes for each of these quantities. For example:

RealType temperature , speed , time ;

Unit degC = visad . data . netcdf . units . Parser . parse ("degC") ;

temperature = new RealType (" temperature " , degC , nu l l) ;

Unit kts = visad . data . netcdf . units . Parser . parse (" kts ") ;
speed = new RealType (" speed" , kts , nu l l) ;

10 Unit sec = visad . data . netcdf . units . Parser . parse (" seconds ") ;
time = new RealType (" time" , sec , nu l l) ;

RealTupleType mydata = new RealTupleType (time , speed , temperature) ;

9.3.2. Using numbers
Now that we’ve defined the MathTypes, let’s see how this works with some "real" data.
Add the following lines of code to the above fragment:

double obsTemp = 32 . ;
double obsSpeed = 15 . ;
double obsTime = 4096 . ;

double [] values = { obsTime , obsSpeed , obsTemp } ;

RealTuple obs = new RealTuple (mydata , values) ;

System . out . println ("obs = "+obs) ;

When you run all this now, you get:

obs = (4096.0, 15.0, 32.0)

9.3.3. Arithmetic with Tuples
Let us now suppose we have a second set of observed data and add this code onto the
end of our example:

double obsTemp2 = −10.;
double obsSpeed2 = 7 . ;
double obsTime2 = 1234 . ;

92

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex7.java

double [] values2 = { obsTime2 , obsSpeed2 , obsTemp2 } ;

RealTuple obs2 = new RealTuple (mydata , values2) ;
System . out . println ("obs2 = "+obs2) ;

When you run this addition, you get:

obs = (4096.0, 15.0, 32.0)
obs2 = (1234.0, 7.0, -10.0)

Our main purpose is to average all the values together. Again we need to define a
Real for our constant, and then do just what we did previously:

Real two = new Real (2 . 0) ;
RealTuple avg = (RealTuple) obs . add (obs2) . divide (two) ;
System . out . println ("avg = "+avg) ;

Finally when you run the complete example, you get:

obs = (4096.0, 15.0, 32.0)
obs2 = (1234.0, 7.0, -10.0)
avg = (2665.0, 11.0, 284.15)

Note that the temperature was converted to the base unit of kelvin.

Hint 2 (arithmetic capability of VisAD applies in consistent manner)
Most important - as you can see the arithmetic capability of VisAD applies to all
types of Data objects in the same manner.

Although we have used a VisAD RealTuple, it is of course just a specific kind of a
Tuple that only contains Reals. Tuples can be used to collect together all types of
VisAD Data objects, including Sets and Functions.

9.4. Sets
As shown in the next section, Set objects are most often used to define the finite sam-
pling of the domain of Field Objects (which approximates a function by interpolating
its values at a finite subset of its domain).
In VisAD, the Set class has many sub-classes for different ways of defining finite

subsets of the Set’s domain. Near the top of the list is the

93

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex8.java
http://www.ssec.wisc.edu/~tomw/visadtutor/dataex9.java

DoubleSet which includes all the double precision values that can be represented
in the computer’s 64 bit word... it is a finite, but very large Set. Farther down
the hierarchy, for example, is the Linear1DSet which consists of n values of a simple
arithmetic progression between two specified values.
VisAD comes with lots of implementations of the Set interface, in order to represent

lots of common topologies. In this introduction, however, we’ll deal only with the
Linear1DSet.
The Set object also defines the CoordinateSystem of the Field’s domain and the

Units of the domain’s RealType components. The following section will deal more
explicitly with Fields.

9.4.1. Making a Set
Working with Sets is deceptively easy. For example, a program that contains these
two lines of code:

Linear1DSet s = new Linear1DSet (−33. , 3 3 . , 5) ;
System . out . println (" s e t s = "+s) ;

will produce this output when run:

Set s = Linear1DSet: Length = 5 Range = -33.0 to 33.0

The Linear1DSet defined in this case has associated MathType of Generic. There is
an alternate form of the constructor for a Linear1DSet that allows you to define the
MathType for this set of numbers, as well.

9.4.2. Set methods
There are several usage methods available for working with Sets. For example, you
may need an enumeration of the values of our little Linear1DSet. If you add the code:

f l o a t [] [] sam = s . getSamples () ;

f o r (i n t i=0; i< ; sam [0] . length ; i++) {
System . out . println (" i = "+i+" sample = "+sam [0] [i]) ;

}

the program would produce the following output:

set s = Linear1DSet: Length = 5 Range = -33.0 to 33.0

i = 0 sample = -33.0

94

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex10.java
http://www.ssec.wisc.edu/~tomw/visadtutor/dataex11.java

i = 1 sample = -16.5
i = 2 sample = 0.0
i = 3 sample = 16.5
i = 4 sample = 33.0

Other methods worth checking out include indexToDouble() which returns an array
of doubles given an array of indices. There is also an inverse method, doubleToIndex().

9.5. Functions
A VisAD Function Data object represents a function from a domain to values of some
specific type (a range). Field is the subclass of Function for functions represented
by finite sets of samples of function values (for example, a satellite image samples a
continuous radiance function at a finite set of pixel locations). This object is really
the heart of VisAD’s Data model when working with many forms of geophysical data,
which tend to be samples of continuous fields.
In order to use Function objects, it is necessary to define the sampling using a Set

of some kind for the domain and to supply appropriate samples for the corresponding
range values. Let’s make a small example. In this case, I want to define a Function
that can convert temperatures from degrees Fahrenheit to Kelvin.

The MathTypes

First, we must define the appropriate MathTypes:

Listing 9.3: The MathTypes

RealType domain = new RealType ("temp_F") ;
RealType range = new RealType ("temp_Kelvin") ;

FunctionType convertTemp = new FunctionType (domain , range) ;

Here, we have defined the RealType for our domain to represent degrees F, and for
the range for degrees K. The FunctionType defines the mapping from the domain to
the range.

The samples

Now we need to define and set the values for the samples of the Function. Let’s say
that we know the values of temperature in both units at -40F and 212F:

Set domain_set = new Linear1DSet(-40., 212., 2);

95

We use a 1D Set because we are only defining a scalar at each point in the range
(rather than a vector).

The FlatField object

Finally, we need to construct the VisAD Data object that will provide for the desired
finite sampling. The FlatField, which is a subclass of Field designed for use with
the Java primitive type double, provides just such a representation and functionality.
So we can say:

FlatField convertData = new FlatField(convertTemp, domain_set);

Which constructs a FlatField which is defined by a FunctionType defined over the
values of the domain_set. First, create an array that contains the numeric values of
the range samples at the two points in the domain_set:

double [] [] values = new double [1] [2] ;
values [0] [0] = 233 . 15 ; // = −40F

values [0] [1] = 373 . 15 ; // = 212F

Then put the range samples into the FlatField using:

convertData.setSamples(values);

Evaluating Functions

Okay, so now let’s test our Function by providing a domain value (that is, a temper-
ature in degrees F) that we want to convert:

Real e = new Real (1 4 . 0) ;
Data v = convertData . evaluate (e) ;

System . out . println (" value f o r 14 .0F = "+v) ;

double vf = (((Real) v) . getValue () − 273 .15) ∗9 . / 5 . + 32 ;
System . out . println (" or (doing the math) = "+vf) ;

When you run this whole example, you get:

value for 14.0F = 263.1499938964844
or (doing the math) = 13.999989013671915

96

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex12.java

9.5.1. Sampling modes
By default, the evaluate() method in a Function uses the sampling mode called
Data.WEIGHTED_AVERAGE. You may also sample using Data.NEAREST_NEIGHBOR, which
in this case would give a different result, since the domain value of 14.0 would be closest
to the domain sample at -40.0, which then means that 233.15 is the associated range
value. If we change the evalute() call to read:

double v = convertData.evaluate(e, Data.NEAREST_NEIGHBOR, Data.NO_ERRORS);

then results in this output when you run the program now:

value for 14.0F = 233.14999389648438
or (doing the math) = -40.00001098632808

9.6. Parting points...
1. The main purpose of this section of the VisAD Tutorial is to encourage the use

of the Data model whether or not you are planning on using anything else in
VisAD (of course, the use of lots of other VisAD software is encouraged ;-)

2. This has been a really brief discussion of topics that can become quite complex.
For example, a Function with a domain of "time" and a range of radar images
forms the basis for animations.

3. Don’t take the names of anything too seriously.

4. I’d like the thank Ugo Taddei, Bill Hibbard, Don Murray, and Stuart Weir for
their input to this tutorial (some of which were taken verbatim).

97

http://www.ssec.wisc.edu/~tomw/visadtutor/dataex13.java

10. The VisAD DataRenderer
Tutorial

This is an initial version of the VisAD DataRenderer Tutorial. This is a very com-
plex topic. The tutorial starts with an overview and general theory of operation of
DataRenderers, then considers the specific design of some example DataRenderers.
Please send any suggestions for how it can be improved to hibbard@facstaff.wisc.edu.

10.1. Overview of DataRenderers
In the VisAD system, visad.DataRenderer is an abstract class of objects that trans-
form Data objects into depictions in Display objects, and in some cases transform
user gestures back into changes in Data objects. Whenever a visad.Data object is
linked to a visad.Display object, via a visad.DataReference object, an object of
some concrete subsclass of visad.DataRenderer is part of the linkage. The current
hierarchy of DataRenderer subclasses distributed with VisAD is:

visad.DataRenderer
visad.java2d.RendererJ2D
visad.java2d.DefaultRendererJ2D
visad.bom.BarbRendererJ2D
visad.java2d.DirectManipulationRendererJ2D
visad.bom.BarbManipulationRendererJ2D
visad.java3d.RendererJ3D
visad.java3d.DefaultRendererJ3D
visad.java3d.AnimationRendererJ3D
visad.bom.BarbRendererJ3D
visad.bom.SwellRendererJ3D
visad.bom.ImageRendererJ3D
visad.bom.TextureFillRendererJ3D
visad.cluster.ClientRendererJ3D
visad.cluster.NodeRendererJ3D
visad.java3d.DirectManipulationRendererJ3D
visad.bom.BarbManipulationRendererJ3D

98

mailto:hibbard@facstaff.wisc.edu

visad.bom.SwellManipulationRendererJ3D
visad.bom.CurveManipulationRendererJ3D
visad.bom.PickManipulationRendererJ3D
visad.bom.PointManipulationRendererJ3D
visad.bom.RubberBandBoxRendererJ3D
visad.bom.RubberBandLineRendererJ3D

The major division of this class hierarchy is between the two graphics APIs cur-
rently used to implement VisAD Displays: Java2D and Java3D. The classes under
visad.java3d.RendererJ3D generate Data object depictions as Java3D scene graphs.
The classes under visad.java2d.RendererJ2D generate Data object depictions as
VisAD internal scene graphs, using subclasses of visad.VisADSceneGraphObject,
which are rendered using Java2D.
When applications link a DataReference to a DisplayImpl by invoking the DisplayImpl’s

addReference() or addReferences() method, they can optionally pass an object
of class DataRenderer. If they do not pass such an object then a default is con-
structed by the DisplayImpl. This default is a visad.java2d.DefaultRendererJ2D
object for a DisplayImplJ2D and a visad.java3d.DefaultRendererJ3D object for a
DisplayImplJ3D. These default DataRenderers implement logic for generating depic-
tions of virtually any VisAD Data object according to virtually any set of ScalarMaps.
This generality is necessary for the default DataRenderers in order for applications to
be able to visualize virtually any data in any way, without needing to define their own
non-default DataRenderers. However, non-default DataRenderers can be selective
about which Data objects and which sets of ScalarMaps they accept.

10.1.1. Reasons for Non-Default DataRenderers
Non-default DataRenderers exist for the following reasons:

1. To produce Data object depictions more efficiently (i.e., faster or using less mem-
ory) than the default DataRenderers.

2. To produce depictions with appearances different than the default appearances.

3. To interpret user gestures as changes to Data object values. These are known as
direct manipulation DataRenderers.

4. To combine multiple Data objects in a single depiction.

5. Or a limitless list of more radical reasons. For example, NodeRendererJ3Ds on a
set of cluster nodes make Serializable scene graph depictions for parts of a Data
object distributed over the cluster, and a ClientRendererJ3D collects and merges
these into a unified depiction in a DisplayImplJ3D on a client machine.

99

We will give examples of DataRenderer subclasses that exist for each of the first
three reasons. The visad.bom.ImageRendererJ3D class is designed to generate depic-
tions of rectangular images and image sequences more efficiently than the defaults. The
Data object linked via a visad.bom.ImageRendererJ3D object must have a MathType
that conforms to one of the patterns:

((x, y) -> z)
(t -> ((x, y) -> z))
((x, y) -> (r, g, b))
(t -> ((x, y) -> (r, g, b)))

and the Display object must have ScalarMaps (actually a subset of these as needed
for the RealTypes in the MathType):

t -> Animation
x -> a spatial axis
y -> a different spatial axis
z -> RGB
r -> Red
g -> Green
b -> Blue

Further, the domain Set of the Field with MathType ((x, y) -> ...) must be
a GriddedSet. The visad.bom.BarbRendererJ3D class is designed to render iden-
tically to the default except that flows are rendered by wind barbs rather than ar-
rows. Thus its linked Data object and Display object can have the same broad range
of MathTypes and sets of ScalarMaps allowed by the default DataRenderers. The
visad.java3d.DirectManipulationRendererJ3D class is designed to interpret user
gestures as data changes for a variety of simple MathTypes and sets of ScalarMaps.
The Data object linked via a visad.java3d.DirectManipulationRendererJ3D object
must have a MathType that conforms to one of the patterns:

x
(..., x, ...)
(..., x, ..., y, ...)
(..., x, ..., y, ..., z, ...)
(x -> (..., y, ...)
(x -> (..., y, ..., z, ...)

The exact criteria on ScalarMaps of the Display object are complex. In the case
of a RealType ’x’ or a RealTupleType (..., x, ...), there must be a ScalarMap of x to
a spatial axis, with other ScalarMaps of x allowed. In the case of a RealTupleType

100

(..., x, ..., y, ...) or (..., x, ..., y, ..., z, ...) there must be a ScalarMap of at least
one of the component RealTypes to a spatial axis. In the case of a FunctionType
(x -> (..., y, ...) or (x -> (..., y, ..., z, ...) there must be a ScalarMap of x to
a spatial axis and a ScalarMap of at least one of y or z to a spatial axis. These
ScalarMap criteria are designed so that there is a way to interpret spatial gestures as
unambiguous modifications of at least some values in the Data object.
There is no DataRenderer subclass currently part of VisAD that exists for the fourth

reason: to combine multiple Data objects in a single depiction. However, a user did
crea such a DataRenderer almost immediately after the system’s initial release in early
1998 (a heroic effort). The purpose was to texture map one image Data object onto a
surface defined by another Data object, where the two Data objects had different spatial
sampling resolution. Technically this DataRenderer should have been accompanied by
new instances of DisplayRealType to be used in ScalarMaps defining what RealType
values would be used to compute pixel coordinates in the texture image Data object.
However, the DataRenderer used the existing DisplayRealTypes Red and Green for
that purpose (somewhat of a hack solution, but effective).
If you are defining a new subclass of DataRenderer, it should be for one of the

five reasons listed in this section. You will need to think about what restrictions your
DataRenderer will place on the MathType of its Data object and the set of ScalarMaps
in its Display object. You may also need new instances of DisplayRealType to define
various parameters of novel rendering techniques.

10.1.2. How to Avoid Writing Non-Default DataRenderers
If you are contemplating writing your own subclass of DataRenderer, a key question is
whether there is some other way to accomplish your goals. The alternative to a custom
DataRenderer is often a network of Data and Cell (i.e., computational) components,
possibly including existing non-default DataRenderers. For example, applications can
alter the appearance of Data depictions by replacing the simple network:

Data -> DisplayImpl

with:

Data -> CellImpl -> Data -> DisplayImpl

The idea is that the CellImpl computes a new Data object (or perhaps several
Data objects) whose depiction generated by existing DataRenderers will have the
desired appearance for the original Data object. For example, the derived Data object
or objects may include new RealType vaues mapped to Shape, that can be used to
"draw" virtually any depiction.

101

Complex manipulation of Data objects can sometimes be accomplished by linking
auxilliary Data objects to the DisplayImpl via existing direct manipulation DataRenderers,
with CellImpl components that compute new values for the original Data object based
on the user’s manipulation of the auxilliary Data objects. For example, RealTuple
data objects, draggable via DirectManipulationRendererJ3D, can be placed at ver-
tices of the depiction of a complex Data object, with a CellImpl that moves the
corresponding "vertex" of complex Data object.
The visad.bom.FrontDrawer class is a good example. It enables users to draw

weather fronts. It includes a Set object linked to the DisplayImpl via a CurveManipulationRendererJ3D.
When the user finishes drawing the Set, a CellImpl is executed that smooths the curve
represented by the Set, and uses it to derive a complex FieldImpl whose depiction is
a repeating frontal shape along the smoothed curve.
It is generally true that most goals can be met with clever networks of existing

VisAD components and DataRenderers, allowing programmers to avoid creating new
DataRenderer subclasses.

10.1.3. DataRenderer Constructors
Your new subclass of DataRenderer will be a subclass of visad.java2d.RendererJ2D
or visad.java3d.RendererJ3D, unless you are implementing VisAD displays for a new
graphics API or doing something equally radical. In fact, your new DataRenderer
will probably be a subclass of visad. java2d. DefaultRendererJ2D or visad.
java3d. DefaultRendererJ3D if it does not interpret user gestures as Data object
changes, and a subclass of visad. java2d. DirectManipulationRendererJ2D or
visad. java3d. DirectManipulationRendererJ3D if it does. All of these classes
have constructors with no arguments, so your new DataRenderer subclass does not
need an explicit constructor unless it needs special arguments from the construc-
tor. For example, the visad. bom. CurveManipulationRendererJ3D is a subclass
of visad. java3d. DirectManipulationRendererJ3D that allows users to define
UnionsSets of Gridded2Dets with manifold dimension = 1 (typically used to define
map outlines) by free hand drawing. Its constructors define arguments for defining
conditions on the shift and control keys for enabling user drawing, and a boolean
argument to restrict the UnionSet to a single Gridded2Dset.

10.1.4. ShadowTypes
The real work of generating depictions of Data objects is done by subclasses of visad.ShadowType.
Every Data object has a MathType, which is really a tree structure of various subclasses
of MathType. For example, the shorthand MathType notation:

(hour -> ((line, element) -> brightness))

102

actually represents the tree structure:

FunctionType (image_sequence_type)
/ \

function domain function range
RealType (hour) FunctionType (image_type)

/ \
function domain function range
RealTupleType RealType (brightness)
/ \

RealType (line) RealType (element)

Recursive algorithms that traverse this tree structure are used to generate depictions
of Data objects with this MathType. These recursive algorithms need to be able to store
temporary information in the nodes of the tree structure. However, since a Data ob-
ject may be linked to many Display objects, each with their own DataRenderer, using
the MathType objects for temporary storage would lead to conflicts. Furthermore,
the recursive algorithms may vary between different DataRenderers. Hence another
class hierarchy is needed for building tree structures that "shadow" the MathType tree
structure. This is the class hierarchy under visad.ShadowType. A tree structure of
ShadowTypes is created for each link between a Data object and a Display object, and
different subclasses of ShadowType can be used to define different algorithms for gener-
ating Data depictions. The ShadowType class hierarchy includes one set of classes that
are independent of graphics API, a set for each graphics API (Java2D and Java3D),
and others as needed for non-default DataRenderers. The hierarchy independent of
graphics API is:

ShadowType
ShadowScalarType
ShadowRealType
ShadowTextType
ShadowTupleType
ShadowRealTupleType
ShadowFunctionOrSetType
ShadowFunctionType
ShadowSetType

Note the neat correspondence of this hierarchy to the MathType hierarchy, ex-
cept for the addition of ShadowFunctionOrSetType. This exists because the visu-
alization algorithms for Set and Function objects are essentially identical (Sets are
treated as the domain Sets of Fields without any range values), and common code for
ShadowFunctionType and ShadowSetType can go in ShadowFunctionOrSetType.

103

The classes visad.java2d.ShadowTypeJ2D and visad.java3d.ShadowTypeJ3D are
subclasses of visad.ShadowType, and these have subclass hierarchies:

ShadowTypeJ2D
ShadowScalarTypeJ2D
ShadowRealTypeJ2D
ShadowTextTypeJ2D
ShadowTupleTypeJ2D
ShadowRealTupleTypeJ2D
ShadowFunctionOrSetTypeJ2D
ShadowFunctionTypeJ2D
ShadowSetTypeJ2D

ShadowTypeJ3D
ShadowScalarTypeJ3D
ShadowRealTypeJ3D
ShadowTextTypeJ3D
ShadowTupleTypeJ3D
ShadowRealTupleTypeJ3D
ShadowFunctionOrSetTypeJ3D
ShadowFunctionTypeJ3D
ShadowSetTypeJ3D

Because Java does not allow multiple inheritance, objects of these classes adapt
objects of the corresponding graphics-API-independent classes in order to have access
to their methods. For example, the ShadowTypeJ3D class includes the variable:

ShadowType adaptedShadowType;

and the ShadowRealTupleTypeJ3D class includes the method:

pub l i c ShadowRealTupleType getReference () {
re turn ((ShadowRealTupleType) adaptedShadowType) . getReference () ;

}

ShadowRealTupleTypeJ3D includes similar implementations for every other method
it needs to "inherit" from ShadowRealTupleType, and other graphics-API-dependent
classes include similar sets of method implementations invoked via adaptedShadowType.
Understanding logic in the ShadowType classes can be a bit tricky, because it moves

between methods in the graphics-API-independent classes and methods in the graphics-
API-dependent classes. Much of the logic of generating depictions is done in the
graphics-API-independent classes which construct VisAD’s internal scene graphs (sub-
classes of visad.VisADSceneGraphObject). These are either converted to Java3D

104

scene graphs by subclasses of ShadowTypeJ3D, or left as is by subclasses of ShadowTypeJ2D
(for later rendering using Java2D). Throughout the rest of this tutorial, we will
use the notation ShadowTypeJ*D to indicate any graphics-API-dependent analog of
ShadowType, and similarly ShadowFunctionTypeJ*D and so on for graphics-API-dependent
analogs of subclasses of ShadowType.
A subclass of DataRenderer defines the subclasses of ShadowType it will use to

generate Data depiction by implementing a set of factory methods. Here are the
implementations of these methods in visad.java3d.RendererJ3D:

pub l i c ShadowType makeShadowFunctionType (
FunctionType type , DataDisplayLink link , ShadowType parent)
throws VisADException , RemoteException {

return new ShadowFunctionTypeJ3D (type , link , parent) ;
}

pub l i c ShadowType makeShadowRealTupleType (
RealTupleType type , DataDisplayLink link , ShadowType parent)
throws VisADException , RemoteException {

10 return new ShadowRealTupleTypeJ3D (type , link , parent) ;
}

pub l i c ShadowType makeShadowRealType (
RealType type , DataDisplayLink link , ShadowType parent)
throws VisADException , RemoteException {

return new ShadowRealTypeJ3D (type , link , parent) ;
}

pub l i c ShadowType makeShadowSetType (
20 SetType type , DataDisplayLink link , ShadowType parent)

throws VisADException , RemoteException {
return new ShadowSetTypeJ3D (type , link , parent) ;

}

pub l i c ShadowType makeShadowTextType (
TextType type , DataDisplayLink link , ShadowType parent)
throws VisADException , RemoteException {

return new ShadowTextTypeJ3D (type , link , parent) ;
}

30
pub l i c ShadowType makeShadowTupleType (

TupleType type , DataDisplayLink link , ShadowType parent)
throws VisADException , RemoteException {

return new ShadowTupleTypeJ3D (type , link , parent) ;
}

In each of these method signatures, the ’type’ argument is the corresponding object
from the tree structure of MathTypes, the ’link’ argument is the DataDisplayLink ob-
ject that defines the link between a Data object and a Display object, and the ’parent’
argument is the parent ShadowType in the tree structure (or null if this ShadowType
is the root of the tree).
It is possible that a non-default DataRenderer would consist solely of implementa-

tions of some of these factory methods, defining alternate subclasses of ShadowType

105

for generating Data depictions.

10.1.5. DisplayRealTypes
Instances of the visad.DisplayRealType class define various types of values used
by algorithms for generating Data depictions. These include display spatial axes
(e.g., XAxis, YAxis, ZAxis), color components (e.g., Red, Green, Blue), Animation,
IsoContour, flow components (e.g., Flow1X, Flow1Y, Flow1Z), etc. Applications
do not define subclasses of DisplayRealType. Instead they define new instances of
DisplayRealType.
New DisplayRealType instances may imply new rendering algorithms and hence re-

quire new subclasses of DataRenderer and ShadowType. However, the default DataRenderers
can detect and interpret new instances of DisplayRealType for new spatial, color
or flow coordinates, as long as they are components of a DisplayTupleType with a
CoordinateSystem whose reference is Display.DisplaySpatialCartesianTuple =
(XAxis, Yaxis, Zaxis), Display.DisplayRGBTuple= (Red, Green, Blue), Display.DisplayFlow1Tuple
= (Flow1X, Flow1Y, Flow1Z), or Display.DisplayFlow2Tuple = (Flow2X, Flow2Y,
Flow2Z). This enables applications to define new spatial, color and flow coordinates
without defining new DataRenderers.

10.1.6. General DataRenderer Theory of Operation
A Display is either a local DisplayImpl or a RemoteDisplayImpl, which adapts a
local DisplayImpl. Methods of RemoteDisplayImpl simply invoke the corresponding
methods of the adpated DisplayImpl, so we only need to understand DisplayImpl. Its
doAction() method is invoked when one of its linked Data or DataReference objects
changes value, or when some other event such as a Control change occurs, that may re-
quire the scene graph for any linked Data object to be recomputed. The doAction()
method invokes the prepareAction() method of each linked DataRenderer, which
determines if recomputation of the scene graph is required for this DataRenderer, and
computes the ranges of RealType values in the linked Data object for autoscaling, if re-
quested by the DisplayImpl (this will happen if this is the first attempt to display any
linked data, if the application calls a method of DisplayImpl requesting autoscaling,
or if a previous autoscaling request failed to establish a value range for some RealType
because of null or missing data).
No current subclass of DataRenderer overrides the implementation of prepareAction()

in DataRenderer. This invokes the DataDisplayLink. prepareData() method,
which computes default values for DisplayRealTypes, analyzes the ScalarMaps linked
to the DisplayImpl via calls to the ShadowType. checkIndices() method, and calls
the DataRenderer. checkDirect()method to determine whether this DataRenderer
supports direct manipulation for the linked Data object and set of ScalarMaps. The

106

checkIndices() recursively calls itself down the tree structure of ShadowTypes to de-
termine which ScalarMaps are relevant to each subtree of the MathType tree structure,
including especially which are relevant to each RealType and TextType (these are the
leaves of the MathType tree). The checkIndices() method determines whether the
combination of MathType and ScalarMaps are feasible for rendering (e.g., a ScalarMap
to Animation is illegal for a RealType occurring in a Function range) and generates
an appropriate Exception if not. The checkIndices() method also precomputes lots
of information useful for generating Data depictions and saves it in the ShadowTypes.
You probably do not need to override the prepareAction() method in your new

DataRenderer. If you need new instances of DisplayRealType that are not new spa-
tial, color or flow coordinates, then you probably do need to override the checkIndices()
methods of your new ShadowTypes. The default implementations of checkIndices()
are complex in order to deal with arbitrary MathTypes and sets of ScalarMaps. How-
ever, most custom DataRenderers deal with restricted MathTypes and ScalarMaps
and hence can have much simpler implementations of checkIndices() (and other
methods that you may need to override).
After DisplayImpl. doAction() invokes the prepareAction() method for each

linked DataRenderer, it uses the RealType range data to autoscale the ScalarMaps
if autoscaling is requested, then invokes the doAction() method for each linked
DataRenderer. This method has implementations in visad. java2d.RendererJ2D
and visad.java3d.RendererJ3D, which invoke the DataRenderer.doTransform()
method if the prepareAction()method determined that the scene graph for the linked
Data needs to be recomputed. These RendererJ2D and RendererJ3D implementations
of doAction() manage the attachment and de-attachment of the scene graph depicting
their Data objects to and from the overall scene graph for the DisplayImpl.
You probably do not need to override the doAction()method in your new DataRenderer.

None of the DataRenderer subclasses distributed with VisAD override the implemen-
tations in visad.java2d.RendererJ2D and visad.java3d.RendererJ3D.
A number of non-default DataRenderers override the implementation of the doTransform()

method. This method returns a scene graph depicting the linked Data and has
different signatures for different graphics APIs. Hence doTransform() is not de-
clared as a method of the abstract DataRenderer class, but is rather a method
name reused in similar ways by DataRenderer’s subclasses for different graphics APIs.
The implementations of doTransform() in visad.java2d.DefaultRendererJ2D and
visad.java3d.DefaultRendererJ3D are quite similar. They both construct a scene
graph group node to serve as the parent for the scene graph depicting the linked Data
object (a javax.media.j3d.BranchNode for DefaultRendererJ3D and a visad.VisADGroup
for DefaultRendererJ2D). They get the root ShadowTypeJ*D for the linked Data
object, which will be the root of a ShadowType tree containing results computed
by DataRenderer.prepareAction(). They get the linked Data object and catch
any RemoteException indicating failure to access a remote Data object (if the Data

107

object is null, they simply return a null value for the parent group of the scene
graph which will trigger a "data is null" message in the display). The real work
of DataRenderer.doTransform() is done by the call to doTransform() method of
the root ShadowTypeJ*D (note that doTransform() is not a method of ShadowType,
but is a method of its subclasses). This doTransform() call is bracketed by calls to the
preProcess() and postProcess() methods of ShadowType. These were designed into
the system as a way to accumulate information during the ShadowType.doTransform()
call that is only assembled into a scene graph after it is all accumulated, but this feature
has never been used. Your DataRenderer can probably ignore the preProcess() and
postProcess() methods. The doTransform() method in both DefaultRendererJ2D
and DefaultRendererJ3D calls the DataDisplayLink.clearData() method. The ref-
erence to Data is cached in the DataDisplayLink during a DisplayImpl.doAction()
cycle, in order to maintain consistency in case Data changes during the process, and in
order to avoid multiple retrievals of remote Data. The clearData() method clears this
cache. The DataRenderer.doTransform() method also initializes some arrays passed
to the doTransform() method of the root ShadowType - more about these later.
The visad. java2d. DirectManipulationRendererJ2D and visad. java3d.

DirectManipulationRendererJ3D classes define their own implementations of doTransform()
in order to add a test for whether direct manipulation is supported for the linked
Data and Displays (this test is primarily on the Data’s MathType and the Display’s
ScalarMaps).

10.1.7. General ShadowType Theory of Operation (KEY
SECTION)

This is a key section because the tree structure under a root ShadowType provides the
basis for the way that a scene graph is constructed to depict a Data object. In fact,
there are four related tree structures involved:

1. The Data object’s tree structure, with Real, Text and Set objects as leaves, and
Tuple and Field objects as non-leaf nodes.

2. The Data object’s MathType also forms a tree structure, similar to the Data tree
structure except that there is a single range MathType under a FunctionType,
but may be many range Data objects under the corresponding Field. There is a
diagram of a MathType tree structure at the start of Section 1.4.

3. The ShadowType tree structure is derived from and identical to the MathType
tree structure. The doTransform() method is called recursively down this tree
structure. A recursive call is made for each range Data value under a Field, rather
than just once for the single range ShadowType of the ShadowFunctionTypeJ*D.
Also, no recursive call is made in certain cases.

108

4. The scene graph depiction of a Data object has a tree structure roughly similar
to the Data tree structure. This scene graph tree structure is assembled via the
scene graph groups returned by the recursive calls to doTransform().

As noted, the doTransform() recursive calls do not always descend all the way to
the leaf nodes in the ShadowType tree structure. Rather, the analysis in the recursive
ShadowType.checkIndices() calls determines that certain nodes in the ShadowType
tree structure are designated as "terminal" nodes, meaning that doTransform() is
not called recursively to the children of these nodes. A ShadowFunctionTypeJ*D
node is terminal if it is "flat" (i.e., the range of its FunctionType is a RealType, a
RealTupleTyple, or a TupleType of RealTypes and RealTupleTypes). A ShadowSetTypeJ*D
is terminal. A "flat" ShadowTupleTypeJ*D (including any ShadowRealTupleTypeJ*D),
ShadowRealTypeJ*D or ShadowTextTypeJ*D is terminal if it is not the child or descen-
dant of a terminal ShadowType.
The ShadowType tree structure plays one more key role in the way scene graphs are

constructed: DisplayRealType values are passed down the tree structure and used to
determine the locations, colors and other graphical attributes of scene graph nodes.
Any Real values in a non-terminal Tuple (i.e., a Tuple corresponding to a non-terminal
ShadowTupleTypeJ*D) are converted to DisplayRealType values via any applicable
ScalarMaps and passed down to any non-Real components of the Tuple. Similarly,
Real values from the domain of a non-terminal Field are converted to DisplayRealType
values via any applicable ScalarMaps and passed down to the corresponding range
Data objects. These values are passed down in the ’value_array’ argument of the
doTransform() method. At terminal nodes, these "passed down" DisplayRealType
values are combined with DisplayRealType values computed from the corresponding
Data object to create scene graph nodes.
The key method of the ShadowType subclasses is doTransform(). It has one sig-

nature in the graphics-API-dependent subclasses and a different signature in the
graphics-API-independent subclasses. Specifically, the signature in the graphics-API-
independent subclasses is:

pub l i c boolean doTransform (Object group , Data data , f l o a t [] value_array ,
f l o a t [] default_values , DataRenderer renderer , ShadowType shadow_api)
throws VisADException , RemoteException

and the signature in the graphics-API-dependent subclasses is:

pub l i c boolean doTransform (Object group , Data data , f l o a t [] value_array ,
f l o a t [] default_values , DataRenderer renderer)
throws VisADException , RemoteException

109

The reason for these different signatures is that the recursive calls to doTransform()
are made on the tree of graphics-API-dependent ShadowTypes, but these generally del-
egate their work by calling doTransform() for their adapted graphics-API-independent
ShadowType and that call has an extra ’shadow_api’ argument where the graphics-
API-dependent ShadowType can pass a ’this’ reference to itself. The doTransform()
method of the graphics-API-independent ShadowType can use this to invoke methods
that require graphics-API-dependent logic (for example, adding geometry and appear-
ance informaiton to a scene graph group).
The arguments to doTransform() are:

Object group parent scene graph group for any scene graph subtrees generated by
this doTransform().

float[] value_array array of DisplayRealType values passed down ShadowType tree in
recursive doTransform() calls. For any ScalarMap ’map’ the index of the value
of its DisplayRealType in value_array is returned by map.getValueIndex().

float[] default_values array of default values for DisplayRealTypes (to be used if no
values is determined by a ScalarMap), passed down ShadowType tree in recur-
sive doTransform() calls. For any ScalarMap ’map’ the index of the value of its
DisplayRealType in default_values is returned by map.getDisplayScalarIndex().

DataRenderer renderer the DataRenderer that made the top-level call to doTransform().

ShadowType shadow_api for the graphics-API-independent ShadowType subclasses
only, this is the corresponding graphics-API-dependent ShadowType.

Different ShadowType subclasses have different implementations of doTransform(),
but they all work in two basic stages:

1. converting data values into DisplayRealType values via ScalarMaps, and

2. for non-terminal ShadowTypes passing the DisplayRealType values to recursive
calls to doTransform(), and for terminal ShadowTypes using the DisplayRealType
values to construct scene graph nodes.

The doTransform() method of a graphics-API-dependent ShadowType typically
just invokes the doTransform() method of its adapted graphics-API-independent
ShadowType. This starts by checking for null data and other error conditions, then get-
ting a Vector of ScalarMaps and associated housekeeping information. It constructs
an array float[][] display_values for accumulating DisplayRealType values con-
verted via ScalarMaps from data values. Then it fills the ’display_values’ array with
any DisplayRealType values in the ’float[] value_array’ argument passed down the

110

tree, as determined from the inherited_values array computed by the checkIndices()
method during the prepareAction() phase.
The way that ’display_values’ is filled with data values varies for different MathTypes.

A Real object only has one value, but its RealType may occur in multiple ScalarMaps
and so it may fill multiple entries in ’display_values’. A RealTuple object or termi-
nal Tuple object has multiple Real values, each used to fill entries in ’display_values’
according to relevant ScalarMaps. A non-terminal Tuple object similarly accumulates
entries into its ’display_values’ array, then passes this as the ’value_array’ argument
in recursive doTransform() calls for each Tuple component that is not a Real or a
RealTuple.
Field and Set objects will have multiple values for the same RealType, one for each

sample of the Field or Set. Thus float[][] display_values is doubly indexed to
permit an array of multiple values for some of its entries. Note that RealTuple, Set and
Field objects may have CoordinateSystems with reference RealTuples whose Real
values may occur in ScalarMaps: these must also be converted to DisplayRealType
values and put into the ’display_values’ array. Finally, Text values are handled spe-
cially. They are not passed as arguments down the recursive doTransform() calls, but
are stored in variables of one ShadowType and then retrieved by its child nodes in the
ShadowType tree. This works because it only makes sense to have a single Text value
at any terminal node in the ShadowType tree.
Once all data values have been converted to DisplayRealType values in the ’dis-

play_values’ array, they are either passed to recursive calls to doTransform() or in
terminal ShadowTypes they are used to construct scene graph nodes. In a non-terminal
ShadowType the scene graphs returned by the recursive doTransform() calls are all
made children of a scene graph group. In a non-terminal Field ShadowType whose
domain is a single RealType mapped to Animation or SelectValue, the scene graph
group is a Switch, which is linked into the AnimationControl or ValueControl which
selects a scene graph child based on Animation or SelectValue behavior.
In a terminal ShadowType, a sequence of calls are made to methods that assemble

various kinds of graphical information from appropriate DisplayRealType values in
the display_values array. These methods are implemented in ShadowType and are:

assembleSelect() assembles boolean flags from values for SelectRange. This infor-
mation is altered when other assemble*() methods find missing values.

assembleColor() assembles red, green, blue and alpha byte values from values for Red,
Green, Blue, Alpha, RGB, RGBA and any other DisplayRealTypes in a color
coordinate system with reference (Red, Green, Blue).

assembleFlow() assembles Cartesian Flow1 and Flow2 values from values for any flow
DisplayRealTypes.

111

assembleSpatial() assembles Cartesian spatial coordinates from values for XAxis,
YAxis, ZAxis and any other DisplayRealTypes in a spatial coordinate systems
with reference (XAxis, YAxis, ZAxis). If needed for filled rendering (e.g., lines,
triangles, textures) or contours, this also constructs a spatial Set object to sup-
ply a topology for rendering. The spatial Set will have domain dimension = 3
for (XAxis, YAxis, ZAxis) but may have manifold dimension <= 3.

assembleShape() assembles an array of VisADGeometryArrays from values for Shape.

If there are any DisplayRealType values for Shape, Text, Flow or IsoContour
these are handled specially. Each of these results in data being depicted by some
specialized "shape" other than a 0-D, 1-D, 2-D or 3-D "graph" of the data. There are
methods in ShadowType named makeFlow(), makeText() and makeContour() which
make these various specialized shapes. These methods can be over-ridden in extensions
of ShadowType to change the appearance of data depictions.
If there are no DisplayRealType values for Shape, Text, Flow or IsoContour then

data are depicted directly via a 0-D, 1-D, 2-D or 3-D "graph". The makePointGeometry()
method in ShadowType depicts data as isolated points, eliminating NaN values (i.e.,
missing values). This is used for data that have manifold dimension = 0, and as a
"punt" for data with manifold dimension = 3 but where volume rendering is not done
because the topology in (XAxis, YAxis, ZAxis) coordinates is not a LinearSet. Oth-
erwise data are depicted by a 1-D, 2-D or 3-D graph. The only 3-D graph option is vol-
ume rendering, which is done in visad.ShadowOrFunctionSetType.doTransform()
via 3-D textures (actually a stack of 2-D textures because 3-D texture mapping is not
implemented on Windows NT) when the boolean isTexture3D = true.
2-D graphs may be implemented by shaded triangles or by 2-D texture mapping

in visad.ShadowOrFunctionSetType.doTransform() when either of the booleans
isTextureMap or curvedTexture = true. Note isTextureMap is true only if the
topology in (XAxis, YAxis, ZAxis) coordinates is a LinearSet. If curvedTexture
= true then the data texture is laid on a sub-sampled surface (for efficiency) and
hence rendering is not an exactly accurate depiction. The degree of sub-sampling is
controlled by the curvedSize variable in GraphicsModeControl.
For 2-D or 3-D linear textures, missing data (including data not selected in SelectRange)

is depicted as either black or transparent, depending in the missingTransparent
flag in GraphicsModeControl. For curvedTexture and for non-texture 1-D and 2-D
graphs, missing data is handled by removing missing points from the geometry via
the VisADGeometryArray.removeMissing() method (with different implementations
for different sub-classes). Note this is preceded by a call to Set.cram_missing(),
which sets NaNs in the spatial Set (normally NaNs are illegal as Set coordinates) to be
detected later by removeMissing(). Map projection discontinuities are removed from
1-D and 2-D geometries via calls to VisADGeometryArray.adjustLongitude() and

112

VisADGeometryArray. adjustSeam(). adJustLongitude() detects and removes
lines and triangles crossing a longitude seam (often at the 180 degree date line, but
not always). adjustSeam() detects and removes lines and triangles crossing any map
projection seam (it is not always accurate in detecting seams, since it uses a heuristic
method based on derivatives of DisplayTupleType CoordinateSystem transforms).

10.1.8. Direct Manipulation Theory of Operation
Direct manipulation DataRenderers translate user mouse or wand gestures (gen-
erally with the right mouse button held down) as changes to Data values. The
visad.DataRenderer class defines a context for doing this, as a set of methods that
direct manipulation DataRenderers need to implement (these methods have non-
abstract implementation in DataRenderer, which must be over-ridden for a direct
manipulation DataRenderer to function correctly). Their signatures are:

// determine i f the MathType and ScalarMap are va l i d f o r d i r e c t manipulat ion
pub l i c void checkDirect ()

throws VisADException , RemoteException

// return reason why d i r e c t manipulat ion i s i n v a l i d
pub l i c String getWhyNotDirect ()

// save array o f s p a t i a l l o c a t i o n s f o r manipulat ion "grab po in t s "
pub l i c synchronized void setSpatialValues (f l o a t [] [] spatial_values)

10
// return minimum d i s tance from mouse ray to a "grab point "
pub l i c synchronized f l o a t checkClose (double [] origin , double [] direction)

// i n t e r p r e t mouse ray as a manipulat ion o f data
pub l i c synchronized void drag_direct (VisADRay ray , boolean first , i n t ←↩

mouseModifiers)

Other methods that direct manipulation DataRenderers may implement (but are
not required to) include:

// may be c a l l e d by drag_direct () f o r temporary scene graph change
pub l i c void addPoint (f l o a t [] x)

throws VisADException

// c a l l e d when mouse button i s r e l ea s ed , ending manipulat ion
pub l i c synchronized void release_direct ()

// may be c a l l e d by app l i c a t i o n s to stop manipulat ion
pub l i c void stop_direct ()

10
// return the index o f the "grab point " c l o s e s t to the mouse ray
pub l i c i n t getCloseIndex ()

113

Note that some direct manipulation DataRenderers include implementations of the
doTransform()method (with signature appropriate for their graphics API). For exam-
ple, visad.bom.PointManipulationRendererJ3D, visad.bom.RubberBandBoxRendererJ3D
and visad.bom.RubberBandLineRendererJ3D all include implementations that return
empty BranchGroups, since none of them actually creates Data depictions.
The checkDirect() method is called by DataDisplayLink.prepareData() and

decides whether this DataRenderer supports the Data’s MathType and the Display’s
ScalarMaps. Rather than returning a boolean, it records its decision by a call to:

pub l i c void setIsDirectManipulation (boolean b)

If checkDirect() decides that it doesn’t support the MathType and ScalarMaps, it
records a reason in a String to be returned by a call to getWhyNotDirect().
The setSpatialValues()method is called by doTransform() (or by the methods it

invokes) to record the "grab points" of the Data depiction in 3-D graphics coordinates.
Note that its spatial_values argument array is organized float[3][number_of_points].
If the Data object is a Real or RealTuple, then number_of_points will be 1, but if the
Data object is a Field or Set then the depiction will be a curve and there will be many
grab points along that curve. Note that for visad.bom.BarbManipulationRendererJ2D
and visad.bom.BarbManipulationRendererJ3D the grab point location is head of the
wind barb, whereas the (latitude, longitude) location of the wind determines the lo-
cation of the barb’s tail. However, for most direct manipulation DataRenderers the
grab point locations coincide with Data spatial locations.
The MouseBehavior invokes the checkClose() and drag_direct() methods when

the user holds down the right mouse button (the choice of mouse button can of course
be changed by custom MouseBehavior subclasses, and note a wand is substituted for
the mouse by visad.java3d.WandBehaviorJ3D). Mouse locations define rays in 3-D
space (for 2-D graphics the ray is simply into the screen, i.e., parallel to the Z axis). The
ray is passed to checkClose() as an origin and direct, but passed to drag_direct()
as a VisADRay (these are equivalent).
The checkClose() method returns the minimum distance from the ray to the grab

points passed to the DataRenderer via setSpatialValues(). When the right mouse
button is first pressed, the MouseBehavior compares the distances it gets from each
direct manipulation DataRenderer linked to the Display. All subsequent mouse mo-
tion events with the right button pressed generate calls to the drag_direct() method
of the DataRenderer whose checkClose() returned the least distance.
The checkClose() method computes the perpendicular distance from the ray to

each grab point. For the closest grab point it determines the closest point on the ray
and stores a 3-D vector offset (in variables named offsetx, offsety and offsetz) from
the closest point to the grab point. This offset vector is used in drag_direct() to

114

avoid having the data values "snap" to the cursor, if the application has called the
DataRenderer method:

pub l i c void setPickCrawlToCursor (boolean b)

with b = true. In this case, the Data value gradually "crawls" toward the mouse
location.
Some DataRenderers, such as visad.bom.CurveManipulationRendererJ3D, allow

the user to draw new Data depictions even where no depiction exists. In such cir-
cumstances their checkClose() implementations sometimes return 0.0f as a way to
assert their claim to the manipulation. In order to avoid such DataRenderers mo-
nopolizing all manipulations, their constructors have arguments where application can
specify conditions on SHIFT and CTRL key states under which they are active. The
checkClose() methods of such DataRenderers can call the DataRenderer method:

pub l i c i n t getLastMouseModifiers ()

to get the SHIFT and CTRL key states when the right mouse button was pressed.
When a DataRenderer may have multiple grab points, they may implement the

getCloseIndex() method to allow application to retrieve the index of the closest
grab point as determined by checkClose(). For example, getCloseIndex() is im-
plemented by visad.bom.PickManipulationRendererJ3D to enable applications to
discover which point along a curve (and hence which Field or Set sample) was picked
by the user.
The drag_direct()method does the real work of a direct manipulation DataRenderer.

It determines a 3-D graphical location from the cursor ray (this involves picking a point
along the cursor ray, which is a bit subtle - more about this below), converts this back
through any applicable display spatial CoordinateSystem, then back through appli-
cable ScalarMaps, to get up to 3 visad.Real values. These are used to update Real
sub-objects of the Data object being manipulated. The Real values are also used to
generate Strings passed to the DisplayRenderer.setCursorStringVector() method
(to be displayed as a cursor location in the upper left corner of the Display window
unless the application has disabled the cursor location display).
The default implementation in DataRenderer.drag_direct() illustrates the func-

tions required of any implementation of this method. First, it checks to make sure that
critical information is available (non-null). Then it checks whether the applications
has called stop_direct(). Then it extracts the origin and direction of its VisADRay
argument and, if pickCrawlToCursor has been set, adds a decreasing fraction of the
pick offset to the origin. If it is the first call to drag_direct() after the right mouse
click, it gets the grabbed spatialValues location in point_x, point_y and point_z.

115

Next comes the subtle problem of determining unique new RealType values, which
requires a point in 3-D (or 2-D), whereas a mouse location defines a ray consisting of an
infinite numbers of points. In the default implementation in DataRenderer.drag_direct(),
this ambiguity is resolved in one of two ways. If only one or two ScalarMaps of
RealTypes are relevant for the MathType of the linked Data, then these determine
a one- or two-dimensional sub-manifold of display space (a line or a plane). In this
case the ambiguity is resolved by finding the intersection of the cursor ray with the
plane or finding its closest point to the line. Note that the default implementation of
DataRenderer.drag_direct() requires that spatial ScalarMaps are to the Cartesian
spatial DisplayRealTypes (i.e., XAxis,YAxis and ZAxis) rather than through display
CoordinateSystems, just so these one- and two-dimensional sub-manifolds are lines
and planes rather than curved. If three ScalarMaps of RealTypes are relevant, then
the ambiguity is resolved by intersecting the ray with the plane perpendicular with
the ray and containing (point_x, point_y, point_z).
Some non-default implementations of drag_direct() resolve this ambiguity in other

ways. For example, visad.bom.CurveManipulationRendererJ3D.drag_direct() al-
lows ScalarMaps to be to non-Cartesian spatial DisplayRealTypes, and resolves the
ambiguity by using Newton’s method to find the intersection of the cursor ray with
curved two-dimensional sub-manifolds in display space. This enables users to draw
curves on the surfaces of spheres, for example.
Once a drag_direct() implementation has determined unique new RealType val-

ues, it must use them to appropriately modify Data objects. The default implementa-
tion in DataRenderer.drag_direct() provides a nice example of doing this in cases
when the linked Data is a Real, a RealTuple and a FlatField.

116

Part III.

The VisAD Cookbock

117

11. Curtis Rueden’s example apps

Curtis Rueden’s wrote some additional VisAD examples and little apps that are pre-
sented here originally.

11.1. Additional VisAD examples
I have coded several small VisAD programs over the years to demonstrate various
VisAD concepts. I thought it might be nice to provide them all from a web site, as
one more VisAD resource. Enjoy! :-)

11.1.1. AnchoredPoint
A VisAD display containing a fixed-width line with one manipulable endpoint, and
one fixed endpoint. This example should be useful for learning about VisAD’s direct
manipulation and computational cell (CellImpl) logic.

Listing 11.1: AnchoredPoint Example

// AnchoredPoint . java

/∗
This app l i c a t i on demonstrates a f ixed−l ength l i n e with one manipulable
endpoint (the other endpoint i s f i x ed at the d i sp l ay ’ s c ente r) .
∗/

import visad . ∗ ;
import visad . java3d . ∗ ;

10 import visad . util . Util ;

import java . awt . event . ∗ ;
import java . rmi . RemoteException ;

import javax . swing . ∗ ;

pub l i c c l a s s AnchoredPoint {

p r i va t e s t a t i c f i n a l f l o a t LENGTH = 5 ;
20 p r i va t e s t a t i c f i n a l f l o a t END_X = 2 ;

p r i va t e s t a t i c f i n a l f l o a t END_Y = 3 ;

pub l i c s t a t i c void main (String [] args) throws Exception {
// math types

118

http://www.ssec.wisc.edu/~curtis/examples/

RealType x = RealType . getRealType ("x") ;
RealType y = RealType . getRealType ("y") ;
f i n a l RealTupleType xy = new RealTupleType (x , y) ;

// mappings
30 ScalarMap xmap = new ScalarMap (x , Display . XAxis) ;

ScalarMap ymap = new ScalarMap (y , Display . YAxis) ;
xmap . setRange (END_X − LENGTH , END_X + LENGTH) ;
ymap . setRange (END_Y − LENGTH , END_Y + LENGTH) ;

// d i sp l ay
DisplayImpl display = new DisplayImplJ3D (" d i sp l ay " ,

new TwoDDisplayRendererJ3D ()) ;
display . disableAction () ;
display . addMap (xmap) ;

40 display . addMap (ymap) ;
GraphicsModeControl gmc = display . getGraphicsModeControl () ;
gmc . setScaleEnable (t rue) ;
gmc . setPointSize (5 . 0 f) ;

// data r e f e r e n c e s
f i n a l DataReferenceImpl line_ref = new DataReferenceImpl (" l i n e ") ;
f i n a l DataReferenceImpl pt_ref = new DataReferenceImpl (" po int ") ;
display . addReference (line_ref) ;
display . addReferences (new DirectManipulationRendererJ3D () , pt_ref , nu l l)←↩

;
50

// data ob j e c t s
doPoint (xy , 0 , 0 , pt_ref) ;
doLine (xy , 0 , 0 , line_ref) ;

// computational c e l l
CellImpl cell = new CellImpl () {

pub l i c void doAction () {
// get po int coo rd ina t e s
RealTuple tuple = (RealTuple) pt_ref . getData () ;

60 i f (tuple == nu l l) r e turn ;
double [] vals = tuple . getValues () ;
f l o a t xval = (f l o a t) vals [0] ;
f l o a t yval = (f l o a t) vals [1] ;

// ad jus t po int coo rd ina t e s
f l o a t xlen = END_X − xval ;
f l o a t ylen = END_Y − yval ;
f l o a t len = (f l o a t) Math . sqrt (xlen ∗ xlen + ylen ∗ ylen) ;
i f (! Util . isApproximatelyEqual (len , LENGTH)) {

70 double lamda = LENGTH / len ;
xval = (f l o a t) (END_X + lamda ∗ (xval − END_X)) ;
yval = (f l o a t) (END_Y + lamda ∗ (yval − END_Y)) ;
t ry { doPoint (xy , xval , yval , pt_ref) ; }
catch (Exception exc) { exc . printStackTrace () ; }
re turn ; // po int change w i l l r e t r i g g e r c e l l

}

// update l i n e
t ry { doLine (xy , xval , yval , line_ref) ; }

80 catch (Exception exc) { exc . printStackTrace () ; }
}

} ;
cell . addReference (pt_ref) ;
display . enableAction () ;

119

// show d i sp l ay onscreen
JFrame frame = new JFrame ("Fixed−l ength l i n e with one anchored point ") ;
frame . addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent e) { System . exit (0) ; }
90 }) ;

JPanel p = new JPanel () ;
p . setLayout (new BoxLayout (p , BoxLayout . X_AXIS)) ;
p . add (display . getComponent ()) ;
frame . setContentPane (p) ;
frame . setSize (400 , 400) ;
Util . centerWindow (frame) ;
frame . show () ;

}

100 p r i va t e s t a t i c void doLine (RealTupleType rtt , f l o a t x , f l o a t y ,
DataReferenceImpl line_ref) throws VisADException , RemoteException

{
f l o a t [] [] samples = { {x , END_X } , {y , END_Y } } ;
Gridded2DSet set = new Gridded2DSet (rtt , samples , 2) ;
line_ref . setData (set) ;

}

p r i va t e s t a t i c void doPoint (RealTupleType rtt , f l o a t x , f l o a t y ,
DataReferenceImpl pt_ref) throws VisADException , RemoteException

110 {
pt_ref . setData (new RealTuple (rtt , new double [] {x , y })) ;

}

}

Download code: AnchoredPoint.java

11.1.2. CursorSSCell
A VisAD SpreadSheet cell extension that prints the cursor coordinates to the console
as they change. This example should be useful for learning how to write your own
SpreadSheet cell extensions, for defining custom SpreadSheet behaviors.

Listing 11.2: CursorSSCell Example

//
// CursorSSCel l . java
//

/∗
Below i s a s imple extens i on o f v i sad . s s . FancySSCell that p r i n t s range va lues
to the conso l e window whenever the cur so r i s being d i sp layed . I t shouldn ’ t
be hard to modify t h i s code to d i sp l ay the range va lues in a JLabel or other
such GUI component .

10
You should be ab le to f o l l ow th i s pattern to extend FancySSCell in any way
you de s i r e , producing any number o f d i f f e r e n t custom spreadsheet c e l l
behav ior s .
∗/

120

http://www.ssec.wisc.edu/~curtis/examples/AnchoredPoint.java

import java . awt . Frame ;
import java . rmi . RemoteException ;
import java . util . Vector ;
import visad . ∗ ;

20 import visad . formula . FormulaManager ;
import visad . ss . ∗ ;

pub l i c c l a s s CursorSSCell extends FancySSCell {

pub l i c CursorSSCell (String name , FormulaManager fman , RemoteServer rs ,
boolean slave , String save , Frame parent)
throws VisADException , RemoteException

{
super (name , fman , rs , slave , save , parent) ;

30
addDisplayListener (new DisplayListener () {

pub l i c void displayChanged (DisplayEvent e) {
// get cur so r value
double [] scale_offset = new double [2] ;
double [] dum_1 = new double [2] ;
double [] dum_2 = new double [2] ;
DisplayRenderer renderer = VDisplay . getDisplayRenderer () ;
double [] cur = renderer . getCursor () ;
Vector cursorStringVector = renderer . getCursorStringVector () ;

40 i f (cursorStringVector == nu l l | | cursorStringVector . size () == 0 | |
cur == nu l l | | cur . length == 0 | | cur [0] != cur [0])

{
re turn ;

}

// l o c a t e x and y mappings
ScalarMap [] maps = getMaps () ;
ScalarMap map_x = nul l , map_y = nu l l ;
f o r (i n t i=0; i<maps . length && (map_x==nu l l | | map_y==nu l l) ; i++) {

50 i f (maps [i] . getDisplayScalar () . equals (Display . XAxis)) {
map_x = maps [i] ;

}
e l s e i f (maps [i] . getDisplayScalar () . equals (Display . YAxis)) {

map_y = maps [i] ;
}

}
i f (map_x == nu l l | | map_y == nu l l) r e turn ;

// get s c a l e
60 map_x . getScale (scale_offset , dum_1 , dum_2) ;

double value_x = (cur [0] − scale_offset [1]) / scale_offset [0] ;
map_y . getScale (scale_offset , dum_1 , dum_2) ;
double value_y = (cur [1] − scale_offset [1]) / scale_offset [0] ;
RealTuple tuple = nu l l ;
t ry {

tuple = new RealTuple (new Real [] {
new Real ((RealType) map_x . getScalar () , value_x) ,
new Real ((RealType) map_y . getScalar () , value_y) }) ;

}
70 catch (VisADException exc) { exc . printStackTrace () ; }

catch (RemoteException exc) { exc . printStackTrace () ; }

// check each data ob j e c t in the c e l l
Data [] data = getData () ;
f o r (i n t i=0; i<data . length ; i++) {

121

i f (data [i] i n s t an c e o f FlatField) {
// get range va lues
FlatField ff = (FlatField) data [i] ;
double [] range_values = nu l l ;

80 try {
Data d = ff . evaluate (tuple) ;
i f (d i n s t an c e o f Real) {

Real r = (Real) d ;
range_values = new double [1] ;
range_values [0] = r . getValue () ;

}
e l s e i f (d i n s t an c e o f RealTuple) {

RealTuple rt = (RealTuple) d ;
i n t dim = rt . getDimension () ;

90 range_values = new double [dim] ;
f o r (i n t j=0; j<dim ; j++) {

Real r = (Real) rt . getComponent (j) ;
range_values [j] = r . getValue () ;

}
}

}
catch (VisADException exc) { exc . printStackTrace () ; }
catch (RemoteException exc) { exc . printStackTrace () ; }

100 // d i sp l ay range va lues somehow ; e . g . :
System . out . print ("data #" + i + " : " +

" (" + value_x + " , " + value_y + ") : ") ;
i f (range_values == nu l l) System . out . println (" nu l l ") ;
e l s e {

i f (range_values . length == 1) {
System . out . println (range_values [0]) ;

}
e l s e {

System . out . print (" (" + range_values [0]) ;
110 f o r (i n t j=1; j<range_values . length ; j++) {

System . out . print (" , " + range_values [j]) ;
}
System . out . println (") ") ;

}
}

}
}

}
}) ;

120 }

pub l i c s t a t i c void main (String [] args) {
SpreadSheet . setSSCellClass (CursorSSCell . c l a s s) ;
SpreadSheet . main (args) ;

}

}

Download code: CursorSSCell.java

122

http://www.ssec.wisc.edu/~curtis/examples/CursorSSCell.java

11.1.3. FormulaEval
A command-line application that demonstrates the visad.formula package by evaluat-
ing simple formulas. This example should be useful for deciphering VisAD’s formula
package. Note, however, that the visad.formula package is somewhat obsolete now,
since VisAD is integrated so well with Jython, which provides similar but much more
advanced functionality.

Listing 11.3: Formula Evaluation Example

//
// FormulaEval . java
//

/∗
This program eva lua t e s a s imple formula us ing VisAD ’ s formula package .
To run i t , type " java FormulaEval 3 .8 4 .5 x+2∗y" at the command l i n e , where
"3 .8" i s a p o s s i b l e value f o r x , "4 .5" i s a p o s s i b l e value f o r y , and "x+2∗y←↩

"
i s the de s i r ed formula to eva luate .

10 ∗/

import java . rmi . RemoteException ;
import visad . ∗ ;
import visad . formula . ∗ ;

pub l i c c l a s s FormulaEval {

pub l i c s t a t i c void main (String [] argv)
throws VisADException , RemoteException

20 {
// get arguments from command l i n e
i f (argv . length < 3) {

System . out . println (" Please ente r three arguments : " +
"two numbers and a formula . ") ;

System . exit (1) ;
}
double d1 = 0 ;
double d2 = 0 ;
try {

30 d1 = Double . parseDouble (argv [0]) ;
d2 = Double . parseDouble (argv [1]) ;

}
catch (NumberFormatException exc) {

System . out . println (" F i r s t two arguments must be numbers . ") ;
System . exit (2) ;

}
String formula = argv [2] ;

// c r ea t e two VisAD Data ob j e c t s that s t o r e f l o a t i n g po int va lues
40 Real x = new Real (d1) ;

Real y = new Real (d2) ;

// c r ea t e formula manager
FormulaManager fman = FormulaUtil . createStandardManager () ;

// r e g i s t e r Data ob j e c t s with formula manager

123

fman . setThing ("x" , x) ;
fman . setThing ("y" , y) ;

50 // a s s i gn formula to new va r i ab l e
fman . assignFormula (" f " , formula) ;

// wait f o r formula to f i n i s h computing , j u s t to be s a f e
fman . waitForFormula (" f ") ;

// get value o f func t i on from formula manager
Real f = (Real) fman . getThing (" f ") ;

// p r in t out r e s u l t s
60 System . out . println ("x = " + x . getValue () + " , y = " + y . getValue ()) ;

System . out . println (" f (x , y) = " + formula + " = " + f . getValue ()) ;

// k i l l threads
try { Thread . sleep (500) ; }
catch (InterruptedException exc) { }
ActionImpl . stopThreadPool () ;

}

}

Download code: FormulaEval.java

11.1.4. IrregularRenderTest
An example of how to do volume rendering when your data is not evenly spaced.
This program is very similar to LinearRenderTest, except that the domain set is an
Irregular3DSet, which must be resampled to a Linear3DSet before VisAD can display
the data as a volume rendering.

Listing 11.4: IrregularRenderTest Example

// I r regu larRenderTest . java

import java . rmi . RemoteException ;

import javax . swing . ∗ ;

import visad . ∗ ;
import visad . java3d . DisplayImplJ3D ;

10 pub l i c c l a s s IrregularRenderTest {

pub l i c s t a t i c void main (String [] args)
throws VisADException , RemoteException

{
// c r ea t e types
RealType x = RealType . getRealType ("x") ;
RealType y = RealType . getRealType ("y") ;
RealType z = RealType . getRealType ("z") ;
RealTupleType xyz = new RealTupleType (x , y , z) ;

124

http://www.ssec.wisc.edu/~curtis/examples/FormulaEval.java

20 RealType value = RealType . getRealType (" value ") ;

// generate some i r r e g u l a r (random) samples
i n t count = 512 ;
f l o a t [] [] samples = new f l o a t [3] [count] ;
f o r (i n t i=0; i<count ; i++) f o r (i n t j=0; j<3; j++) {

samples [j] [i] = (f l o a t) (1000 ∗ Math . random ()) ;
}
Irregular3DSet iset = new Irregular3DSet (xyz ,

samples , nu l l , nu l l , nu l l , nu l l , f a l s e) ;
30

// bu i ld f i e l d
FunctionType ftype = new FunctionType (xyz , value) ;
FlatField field = new FlatField (ftype , iset) ;
f l o a t [] [] values = new f l o a t [1] [count] ;
f o r (i n t i=0; i<count ; i++) {

values [0] [i] = 1500 − (Math . abs (samples [0] [i] − 500) +
Math . abs (samples [1] [i] − 500) + Math . abs (samples [2] [i] − 500)) ;

}
field . setSamples (values , f a l s e) ;

40
// resample f i e l d to r e gu l a r g r id
i n t size = 32 ;
count = size ∗ size ∗ size ;
Linear3DSet set = new Linear3DSet (xyz ,

0 , 1000 , size , 0 , 1000 , size , 0 , 1000 , size) ;
field = (FlatField)

field . resample (set , Data . WEIGHTED_AVERAGE , Data . NO_ERRORS) ;

// c r ea t e d i sp l ay
50 DisplayImpl display = new DisplayImplJ3D (" d i sp l ay ") ;

display . getGraphicsModeControl () . setPointSize (5 . 0 f) ;
display . addMap (new ScalarMap (x , Display . XAxis)) ;
display . addMap (new ScalarMap (y , Display . YAxis)) ;
display . addMap (new ScalarMap (z , Display . ZAxis)) ;
ScalarMap color = new ScalarMap (value , Display . RGBA) ;
display . addMap (color) ;

// a s s i gn alpha channel
BaseColorControl cc = (BaseColorControl) color . getControl () ;

60 cc . setTable (tweakAlpha (cc . getTable ())) ;

// add data to d i sp l ay
DataReferenceImpl ref = new DataReferenceImpl (" r e f ") ;
ref . setData (field) ;
display . addReference (ref) ;

// show d i sp l ay onscreen
JFrame frame = new JFrame (" I r r e g u l a r render ing t e s t ") ;
frame . setDefaultCloseOperation (JFrame . EXIT_ON_CLOSE) ;

70 frame . getContentPane () . add (display . getComponent ()) ;
frame . setBounds (200 , 200 , 400 , 400) ;
frame . show () ;

}

p r i va t e s t a t i c f l o a t [] [] tweakAlpha (f l o a t [] [] table) {
i n t pow = 2 ;
i n t len = table [3] . length ;
f o r (i n t i=0; i<len ; i++) {

table [3] [i] = (f l o a t) Math . pow ((double) i / len , pow) ;
80 }

125

re turn table ;
}

}

Download code: IrregularRenderTest.java

11.1.5. LinearRenderTest
A simple demonstration of VisAD’s volume rendering capabilities.

Listing 11.5: LinearRenderTest Example

// LinearRenderTest . java

import java . rmi . RemoteException ;

import javax . swing . ∗ ;

import visad . ∗ ;
import visad . java3d . DisplayImplJ3D ;

10 pub l i c c l a s s LinearRenderTest {

pub l i c s t a t i c void main (String [] args)
throws VisADException , RemoteException

{
// c r ea t e types
RealType x = RealType . getRealType ("x") ;
RealType y = RealType . getRealType ("y") ;
RealType z = RealType . getRealType ("z") ;
RealTupleType xyz = new RealTupleType (x , y , z) ;

20 RealType value = RealType . getRealType (" value ") ;

// generate some r egu l a r samples
i n t size = 32 ;
i n t count = size ∗ size ∗ size ;
Linear3DSet set = new Linear3DSet (xyz ,

0 , 1000 , size , 0 , 1000 , size , 0 , 1000 , size) ;
f l o a t [] [] samples = set . getSamples (f a l s e) ;

// bu i ld f i e l d
30 FunctionType ftype = new FunctionType (xyz , value) ;

FlatField field = new FlatField (ftype , set) ;
f l o a t [] [] values = new f l o a t [1] [count] ;
f o r (i n t i=0; i<count ; i++) {

values [0] [i] = 1500 − (Math . abs (samples [0] [i] − 500) +
Math . abs (samples [1] [i] − 500) + Math . abs (samples [2] [i] − 500)) ;

}
field . setSamples (values , f a l s e) ;

// c r ea t e d i sp l ay
40 DisplayImpl display = new DisplayImplJ3D (" d i sp l ay ") ;

display . getGraphicsModeControl () . setPointSize (5 . 0 f) ;
display . addMap (new ScalarMap (x , Display . XAxis)) ;
display . addMap (new ScalarMap (y , Display . YAxis)) ;

126

http://www.ssec.wisc.edu/~curtis/examples/IrregularRenderTest.java

display . addMap (new ScalarMap (z , Display . ZAxis)) ;
ScalarMap color = new ScalarMap (value , Display . RGBA) ;
display . addMap (color) ;

// a s s i gn alpha channel
BaseColorControl cc = (BaseColorControl) color . getControl () ;

50 cc . setTable (tweakAlpha (cc . getTable ())) ;

// add data to d i sp l ay
DataReferenceImpl ref = new DataReferenceImpl (" r e f ") ;
ref . setData (field) ;
display . addReference (ref) ;

// show d i sp l ay onscreen
JFrame frame = new JFrame (" Linear render ing t e s t ") ;
frame . setDefaultCloseOperation (JFrame . EXIT_ON_CLOSE) ;

60 frame . getContentPane () . add (display . getComponent ()) ;
frame . setBounds (200 , 200 , 400 , 400) ;
frame . show () ;

}

p r i va t e s t a t i c f l o a t [] [] tweakAlpha (f l o a t [] [] table) {
i n t pow = 2 ;
i n t len = table [3] . length ;
f o r (i n t i=0; i<len ; i++) {

table [3] [i] = (f l o a t) Math . pow ((double) i / len , pow) ;
70 }

return table ;
}

}

Download code: LinearRenderTest.java

11.1.6. MiniDataServer
An example that serves a data object on an RMI server. The object can then be viewed
remotely with the VisAD SpreadSheet. This example should be useful for deciphering
the VisAD SpreadSheet’s RMI support.

Listing 11.6: MiniDataServer Example

// MiniDataServer . java

import java . awt . event . ∗ ;
import java . net . ∗ ;
import java . rmi . ∗ ;
import javax . swing . ∗ ;
import visad . ∗ ;
import visad . data . ∗ ;
import visad . java2d . DisplayImplJ2D ;

10
/∗
This example c r e a t e s a RemoteServer and loads a data ob j e c t in to i t .
S ta r t i t up by typing :

127

http://www.ssec.wisc.edu/~curtis/examples/LinearRenderTest.java

java MiniDataServer ServerName DataName dataF i l e

where ServerName i s the de s i r ed name f o r the RMI server , DataName i s
the de s i r ed name f o r the data r e f e r enc e , and dataF i l e i s the name o f
the data f i l e to load up and se rve . Be sure you s t a r t up rm i r e g i s t r y
be f o r e running MiniDataServer .

20
Then , load up the SpreadSheet and try :

rmi :// ip . address /ServerName/DataName
(where ip . address i s your machine ’ s IP address) and you should see
the data in the SpreadSheet c e l l .
∗/

pub l i c c l a s s MiniDataServer {

pub l i c s t a t i c void main (String [] args) throws Exception {
30 i f (args . length < 3) {

System . err . println (" Please s p e c i f y three command l i n e arguments : ") ;
System . err . println (" − Server name (e . g . , MyServer) ") ;
System . err . println (" − Ce l l name (e . g . , A1) ") ;
System . err . println (" − Data f i l e (e . g . , mydata . nc) ") ;
System . exit (−1) ;

}
String server = args [0] ;
String cell = args [1] ;
String file = args [2] ;

40
// load data
System . out . println ("Loading " + file + " . . . ") ;
DefaultFamily loader = new DefaultFamily (" l oade r ") ;
Data data = loader . open (file) ;

// s e t up d i sp l ay
System . out . println (" Se t t ing up d i sp l ay . . . ") ;
ScalarMap [] maps = data . getType () . guessMaps (f a l s e) ;
DisplayImplJ2D display = new DisplayImplJ2D ("MiniDataServer ") ;

50 f o r (i n t i=0; i<maps . length ; i++) display . addMap (maps [i]) ;
DataReferenceImpl ref = new DataReferenceImpl (cell) ;
ref . setData (data) ;
display . addReference (ref) ;

// s t a r t up remote s e r v e r
System . out . println (" S ta r t i ng remote s e r v e r . . . ") ;
RemoteServerImpl rsi = nu l l ;
t ry {

rsi = new RemoteServerImpl () ;
60 Naming . rebind ("///" + server , rsi) ;

}
catch (java . rmi . ConnectException exc) {

System . err . println (" Please run rm i r e g i s t r y f i r s t . ") ;
System . exit (−2) ;

}
catch (MalformedURLException exc) {

System . err . println ("Error binding s e r v e r ; t ry a d i f f e r e n t name . ") ;
System . exit (−3) ;

}
70 catch (RemoteException exc) {

System . err . println ("Error binding s e r v e r : ") ;
exc . printStackTrace () ;
System . exit (−4) ;

}

128

rsi . addDataReference (ref) ;

// s e t up GUI
System . out . println ("Br inging up d i sp l ay . . . ") ;
JFrame frame = new JFrame ("Mini data s e r v e r ") ;

80 JPanel pane = new JPanel () ;
pane . setLayout (new BoxLayout (pane , BoxLayout . X_AXIS)) ;
frame . setContentPane (pane) ;
pane . add (display . getComponent ()) ;
frame . addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent e) { System . exit (0) ; }
}) ;
frame . pack () ;
frame . show () ;

}
90

}

Download code: MiniDataServer.java

11.1.7. RadialLine
Similar to AnchoredPoint, but uses manual picking instead of a VisAD direct manipu-
lation renderer. This implementation allows the user to drag the line around no matter
where on the line it is clicked. This method is a bit more work than AnchoredPoint,
but offers more control.

Listing 11.7: RadialLine Example

// Radia lLine . java

/∗
This app l i c a t i on demonstrates a f ixed−l ength l i n e that i s manipulable
through manual p i ck ing (i . e . , not with a d i r e c t manipulat ion rendere r) .
∗/

import visad . ∗ ;
import visad . java3d . ∗ ;

10 import visad . util . Util ;

import java . awt . event . ∗ ;
import java . rmi . RemoteException ;
import java . util . Vector ;

import javax . swing . ∗ ;

pub l i c c l a s s RadialLine {

20 p r i va t e s t a t i c f i n a l f l o a t LENGTH = 5 ;
p r i va t e s t a t i c f i n a l f l o a t END_X = 2 ;
p r i va t e s t a t i c f i n a l f l o a t END_Y = 3 ;
p r i va t e s t a t i c f i n a l double THRESHOLD = 0 . 1 ;

pub l i c s t a t i c void main (String [] args) throws Exception {

129

http://www.ssec.wisc.edu/~curtis/examples/MiniDataServer.java

// math types
RealType x = RealType . getRealType ("x") ;
RealType y = RealType . getRealType ("y") ;
f i n a l RealTupleType xy = new RealTupleType (x , y) ;

30
// mappings
ScalarMap xmap = new ScalarMap (x , Display . XAxis) ;
ScalarMap ymap = new ScalarMap (y , Display . YAxis) ;
xmap . setRange (END_X − LENGTH , END_X + LENGTH) ;
ymap . setRange (END_Y − LENGTH , END_Y + LENGTH) ;

// d i sp l ay
f i n a l DisplayImpl display = new DisplayImplJ3D (" d i sp l ay " ,

new TwoDDisplayRendererJ3D ()) ;
40 display . disableAction () ;

display . addMap (xmap) ;
display . addMap (ymap) ;
GraphicsModeControl gmc = display . getGraphicsModeControl () ;
gmc . setScaleEnable (t rue) ;
gmc . setPointSize (5 . 0 f) ;

// data r e f e r e n c e s
f i n a l DataReferenceImpl lineRef = new DataReferenceImpl (" l i n e ") ;
display . addReference (lineRef) ;

50
// data ob j e c t s
doLine (xy , 0 , 0 , lineRef) ;

display . enableEvent (DisplayEvent . MOUSE_DRAGGED) ;
display . addDisplayListener (new DisplayListener () {

p r i va t e boolean isDragging = f a l s e ;
pub l i c void displayChanged (DisplayEvent e) {

// v e r i f y mouse p r e s s or drag
i n t id = e . getId () ;

60 boolean press = id == DisplayEvent . MOUSE_PRESSED ;
boolean drag = id == DisplayEvent . MOUSE_DRAGGED ;
boolean release = id == DisplayEvent . MOUSE_RELEASED ;
i f (! press && ! drag && ! release) re turn ;

// v e r i f y r i gh t mouse button only
MouseEvent mouse = (MouseEvent) e . getInputEvent () ;
i f (! SwingUtilities . isRightMouseButton (mouse)) re turn ;

i f (release) {
70 isDragging = f a l s e ;

r e turn ; // done dragging
}

// get po int coo rd ina t e s
i n t x = e . getX () ;
i n t y = e . getY () ;
double [] vals = pixelToDomain (display , x , y) ;

// v e r i f y coo rd ina t e s are c l o s e enough to the l i n e
80 i f (press) {

t ry {
Gridded2DSet set = (Gridded2DSet) lineRef . getData () ;
f l o a t [] [] samps = set . getSamples (f a l s e) ;
double [] ep1 = { samps [0] [0] , samps [1] [0] } ;
double [] ep2 = { samps [0] [1] , samps [1] [1] } ;
double dist = getDistance (ep1 , ep2 , vals , t rue) ;

130

i f (dist > THRESHOLD) re turn ; // c l i c k i s too f a r away
isDragging = true ;

}
90 catch (VisADException exc) { exc . printStackTrace () ; }

}
i f (! isDragging) re turn ;

// ad jus t po int coo rd ina t e s
f l o a t xval = (f l o a t) vals [0] ;
f l o a t yval = (f l o a t) vals [1] ;
f l o a t xlen = END_X − xval ;
f l o a t ylen = END_Y − yval ;
f l o a t len = (f l o a t) Math . sqrt (xlen ∗ xlen + ylen ∗ ylen) ;

100 i f (! Util . isApproximatelyEqual (len , LENGTH)) {
double lamda = LENGTH / len ;
xval = (f l o a t) (END_X + lamda ∗ (xval − END_X)) ;
yval = (f l o a t) (END_Y + lamda ∗ (yval − END_Y)) ;

}

// update l i n e
t ry { doLine (xy , xval , yval , lineRef) ; }
catch (Exception exc) { exc . printStackTrace () ; }

}
110 }) ;

display . enableAction () ;

// show d i sp l ay onscreen
JFrame frame = new JFrame ("Radial l i n e with manual p i ck ing ") ;
frame . addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent e) { System . exit (0) ; }
}) ;
JPanel p = new JPanel () ;

120 p . setLayout (new BoxLayout (p , BoxLayout . X_AXIS)) ;
p . add (display . getComponent ()) ;
frame . setContentPane (p) ;
frame . setSize (400 , 400) ;
Util . centerWindow (frame) ;
frame . show () ;

}

p r i va t e s t a t i c void doLine (RealTupleType rtt , f l o a t x , f l o a t y ,
DataReferenceImpl lineRef) throws VisADException , RemoteException

130 {
f l o a t [] [] samples = { {x , END_X } , {y , END_Y } } ;
Gridded2DSet set = new Gridded2DSet (rtt , samples , 2) ;
lineRef . setData (set) ;

}

// −− Ut i l i t y methods −−

/∗∗ Converts the g iven cur so r coo rd ina t e s to domain coo rd ina t e s . ∗/
140 pub l i c s t a t i c double [] cursorToDomain (DisplayImpl d , double [] cursor) {

re turn cursorToDomain (d , nu l l , cursor) ;
}

/∗∗ Converts the g iven cur so r coo rd ina t e s to domain coo rd ina t e s . ∗/
pub l i c s t a t i c double [] cursorToDomain (DisplayImpl d ,

RealType [] types , double [] cursor)
{

131

// l o c a t e x , y and z mappings
Vector maps = d . getMapVector () ;

150 i n t numMaps = maps . size () ;
ScalarMap mapX = nul l , mapY = nul l , mapZ = nu l l ;
f o r (i n t i=0; i<numMaps ; i++) {

i f (mapX != nu l l && mapY != nu l l && mapZ != nu l l) break ;
ScalarMap map = (ScalarMap) maps . elementAt (i) ;
i f (types == nu l l) {

DisplayRealType drt = map . getDisplayScalar () ;
i f (drt . equals (Display . XAxis)) mapX = map ;
e l s e i f (drt . equals (Display . YAxis)) mapY = map ;
e l s e i f (drt . equals (Display . ZAxis)) mapZ = map ;

160 }
e l s e {

ScalarType st = map . getScalar () ;
i f (st . equals (types [0])) mapX = map ;
i f (st . equals (types [1])) mapY = map ;
i f (st . equals (types [2])) mapZ = map ;

}
}

// ad jus t f o r s c a l e
170 double [] scaleOffset = new double [2] ;

double [] dummy = new double [2] ;
double [] values = new double [3] ;
i f (mapX == nu l l) values [0] = Double . NaN ;
e l s e {

mapX . getScale (scaleOffset , dummy , dummy) ;
values [0] = (cursor [0] − scaleOffset [1]) / scaleOffset [0] ;

}
i f (mapY == nu l l) values [1] = Double . NaN ;
e l s e {

180 mapY . getScale (scaleOffset , dummy , dummy) ;
values [1] = (cursor [1] − scaleOffset [1]) / scaleOffset [0] ;

}
i f (mapZ == nu l l) values [2] = Double . NaN ;
e l s e {

mapZ . getScale (scaleOffset , dummy , dummy) ;
values [2] = (cursor [2] − scaleOffset [1]) / scaleOffset [0] ;

}

re turn values ;
190 }

/∗∗ Converts the g iven p i x e l coo rd ina t e s to cur so r coo rd ina t e s . ∗/
pub l i c s t a t i c double [] pixelToCursor (DisplayImpl d , i n t x , i n t y) {

MouseBehavior mb = d . getDisplayRenderer () . getMouseBehavior () ;
VisADRay ray = mb . findRay (x , y) ;
r e turn ray . position ;

}

/∗∗ Converts the g iven p i x e l coo rd ina t e s to domain coo rd ina t e s . ∗/
200 pub l i c s t a t i c double [] pixelToDomain (DisplayImpl d , i n t x , i n t y) {

re turn cursorToDomain (d , pixelToCursor (d , x , y)) ;
}

/∗∗
∗ Computes the minimum di s tance between the po int v and the l i n e a−b .
∗
∗ @param a Coordinates o f the l i n e ’ s f i r s t endpoint
∗ @param b Coordinates o f the l i n e ’ s second endpoint

132

∗ @param v Coordinates o f the standa lone endpoint
210 ∗ @param segment Whether d i s t ance computation should be

∗ cons t ra ined to the given l i n e segment
∗/

pub l i c s t a t i c double getDistance (double [] a , double [] b , double [] v ,
boolean segment)

{
i n t len = a . length ;

// ve c to r s
double [] ab = new double [len] ;

220 double [] va = new double [len] ;
f o r (i n t i=0; i<len ; i++) {

ab [i] = a [i] − b [i] ;
va [i] = v [i] − a [i] ;

}

// p r o j e c t v onto (a , b)
double numer = 0 ;
double denom = 0 ;
f o r (i n t i=0; i<len ; i++) {

230 numer += va [i] ∗ ab [i] ;
denom += ab [i] ∗ ab [i] ;

}
double c = numer / denom ;
double [] p = new double [len] ;
f o r (i n t i=0; i<len ; i++) p [i] = c ∗ ab [i] + a [i] ;

// determine which point (a , b or p) to use in d i s t ance computation
i n t flag = 0 ;
i f (segment) {

240 f o r (i n t i=0; i<len ; i++) {
i f (p [i] > a [i] && p [i] > b [i]) flag = a [i] > b [i] ? 1 : 2 ;
e l s e i f (p [i] < a [i] && p [i] < b [i]) flag = a [i] < b [i] ? 1 : 2 ;
e l s e cont inue ;
break ;

}
}

double sum = 0 ;
f o r (i n t i=0; i<len ; i++) {

250 double q ;
i f (flag == 0) q = p [i] − v [i] ; // use p
e l s e i f (flag == 1) q = a [i] − v [i] ; // use a
e l s e q = b [i] − v [i] ; // f l a g == 2 , use b
sum += q ∗ q ;

}

re turn Math . sqrt (sum) ;
}

260 }

Download code: RadialLine.java

133

http://www.ssec.wisc.edu/~curtis/examples/RadialLine.java

11.1.8. RiversColor
This program is just like visad/examples/Rivers.java, except that the line segments
are different colors instead of plain white. (This scenario requires a more complex
MathType.)

Listing 11.8: RiversColor Example

// RiversColor . java

/∗
This app l i c a t i on demonstrates us ing UnionSets and Fie ld Impls
to c r e a t e a c o l l e c t i o n o f co l o r ed l i n e segments .
∗/

import visad . ∗ ;
import visad . java2d . ∗ ;

10
import java . awt . BorderLayout ;
import java . awt . event . ∗ ;
import java . rmi . RemoteException ;

import javax . swing . ∗ ;

/∗∗ RiversColor i s based on v i sad /examples /Rivers . java . ∗/
pub l i c c l a s s RiversColor {

20 pub l i c s t a t i c void main (String args [])
throws VisADException , RemoteException

{
RealTupleType earth =

new RealTupleType (RealType . Latitude , RealType . Longitude) ;

// cons t ruc t s t r a i g h t south f l ow ing r i v e r 1
f l o a t [] [] points1 = {{3.0 f , 2 . 0 f , 1 . 0 f , 0 . 0 f } ,

{0 .0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f }} ;
Gridded2DSet river1 = new Gridded2DSet (earth , points1 , 4) ;

30
// cons t ruc t ea s t f e ed e r r i v e r 2
f l o a t [] [] points2 = {{3.0 f , 2 . 0 f , 1 . 0 f } ,

{2 .0 f , 1 . 0 f , 0 . 0 f }} ;
Gridded2DSet river2 = new Gridded2DSet (earth , points2 , 3) ;

// cons t ruc t west f e ed e r r i v e r 3
f l o a t [] [] points3 = {{4.0 f , 3 . 0 f , 2 . 0 f } ,

{−2.0f , −1.0f , 0 . 0 f }} ;
Gridded2DSet river3 = new Gridded2DSet (earth , points3 , 3) ;

40
// cons t ruc t r i v e r system se t
Gridded2DSet [] riverSystem = { river1 , river2 , river3 } ;
UnionSet riversSet = new UnionSet (earth , riverSystem) ;

// cons t ruc t r i v e r f i e l d f o r c o l o r i n g r i v e r s
RealType red = RealType . getRealType (" red ") ;
RealType green = RealType . getRealType (" green ") ;
RealType blue = RealType . getRealType (" blue ") ;
RealTupleType rgb = new RealTupleType (red , green , blue) ;

50 FunctionType ftype = new FunctionType (earth , rgb) ;

134

FlatField riversField = new FlatField (ftype , riversSet) ;
f l o a t [] [] samples = new f l o a t [] [] { // 4+3+3=10 sample po in t s t o t a l

{1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0} , // red
{1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 1} , // green
{0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1} // blue

} ;
riversField . setSamples (samples , f a l s e) ;

// c r ea t e a DataReference f o r r i v e r system
60 f i n a l DataReference riversRef = new DataReferenceImpl (" r i v e r s ") ;

riversRef . setData (riversField) ;

// c r ea t e a Display us ing Java2D
DisplayImpl display = new DisplayImplJ2D (" image d i sp l ay ") ;

// map earth coo rd ina t e s to d i sp l ay coo rd ina t e s
display . addMap (new ScalarMap (RealType . Longitude , Display . XAxis)) ;
display . addMap (new ScalarMap (RealType . Latitude , Display . YAxis)) ;

70 // map co l o r components to c o l o r space
ScalarMap redMap = new ScalarMap (red , Display . Red) ;
ScalarMap greenMap = new ScalarMap (green , Display . Green) ;
ScalarMap blueMap = new ScalarMap (blue , Display . Blue) ;
redMap . setRange (0 , 1) ;
greenMap . setRange (0 , 1) ;
blueMap . setRange (0 , 1) ;
display . addMap (redMap) ;
display . addMap (greenMap) ;
display . addMap (blueMap) ;

80
// l i n k the Display to r i v e r sRe f
display . addReference (riversRef) ;
riversRef . setData (riversField) ;

// c r ea t e JFrame (i . e . , a window) f o r d i sp l ay and s l i d e r
JFrame frame = new JFrame (" RiversColor VisAD Appl i cat ion ") ;
frame . addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent e) { System . exit (0) ; }
}) ;

90
// c r ea t e JPanel in JFrame
JPanel panel = new JPanel () ;
panel . setLayout (new BorderLayout ()) ;
frame . setContentPane (panel) ;

// add d i sp l ay to JPanel
panel . add (display . getComponent ()) ;

// s e t s i z e o f JFrame and make i t v i s i b l e
100 frame . setSize (500 , 500) ;

frame . setVisible (t rue) ;
}

}

Download code: RiversColor.java

135

http://www.ssec.wisc.edu/~curtis/examples/RiversColor.java

11.1.9. SurfaceAnimation
Illustrates a curved 2D surface embedded in a 3D display, whose color values animate
over time, using MathType (time -> ((x, y) -> (z, value)))

Listing 11.9: SurfaceAnimation Example

// SurfaceAnimation . java

import java . awt . event . ∗ ;
import java . rmi . RemoteException ;
import javax . swing . JFrame ;

import visad . ∗ ;
import visad . java3d . ∗ ;

10 /∗∗ Constructs a su r f a c e whose c o l o r s animate over time . ∗/
pub l i c c l a s s SurfaceAnimation {

pub l i c s t a t i c void main (String [] args)
throws VisADException , RemoteException

{
i n t numTimePoints = 10 ;
i n t xLen = 32 , yLen = 32 ;
i n t len = xLen ∗ yLen ;

20 // cons t ruc t data types
RealType tType = RealType . getRealType (" time") ;
RealType xType = RealType . getRealType ("x") ;
RealType yType = RealType . getRealType ("y") ;
RealType zType = RealType . getRealType ("z") ;
RealType vType = RealType . getRealType (" value ") ;
RealTupleType xy = new RealTupleType (xType , yType) ;
RealTupleType zv = new RealTupleType (zType , vType) ;
FunctionType surfaceType = new FunctionType (xy , zv) ;
FunctionType animType = new FunctionType (tType , surfaceType) ;

30 Integer2DSet surfaceSet = new Integer2DSet (xy , xLen , yLen) ;
Integer1DSet animSet = new Integer1DSet (tType , numTimePoints) ;

// generate su r f a c e va lues
f l o a t [] surface = new f l o a t [len] ;
f o r (i n t y=0; y<yLen ; y++) {

f o r (i n t x=0; x<xLen ; x++) {
// a nice , rounded su r f a c e
f l o a t xn = (f l o a t) xLen / 2 − x ;
f l o a t yn = (f l o a t) yLen / 2 − y ;

40 surface [y ∗ xLen + x] = xn ∗ xn + yn ∗ yn ;
}

}

// generate c o l o r va lues
FieldImpl data = new FieldImpl (animType , animSet) ;
f o r (i n t t=0; t<numTimePoints ; t++) {

FlatField field = new FlatField (surfaceType , surfaceSet) ;
f l o a t [] values = new f l o a t [len] ;
// a l i n e a r p rog r e s s i on o f c o l o r va lues

50 f o r (i n t i=0; i<len ; i++) values [i] = len ∗ t + i ;
f l o a t [] [] samples = { surface , values } ;

136

field . setSamples (samples , f a l s e) ;
data . setSample (t , field) ;

}

// c r ea t e d i sp l ay
DisplayImpl display = new DisplayImplJ3D (" d i sp l ay ") ;
DataReferenceImpl ref = new DataReferenceImpl (" r e f ") ;
ref . setData (data) ;

60 display . addMap (new ScalarMap (tType , Display . Animation)) ;
display . addMap (new ScalarMap (xType , Display . XAxis)) ;
display . addMap (new ScalarMap (yType , Display . YAxis)) ;
display . addMap (new ScalarMap (zType , Display . ZAxis)) ;
display . addMap (new ScalarMap (vType , Display . RGB)) ;
display . addReference (ref) ;

// s t a r t animation
AnimationControl animControl = (AnimationControl)

display . getControl (AnimationControl . c l a s s) ;
70 animControl . setOn (t rue) ;

// show d i sp l ay onscreen
JFrame frame = new JFrame (" Sur face animation ") ;
frame . getContentPane () . add (display . getComponent ()) ;
frame . addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent e) { System . exit (0) ; }
}) ;
frame . pack () ;
frame . show () ;

80 }

}

Download code: SurfaceAnimation.java

11.1.10. WhiteSSCell
A VisAD SpreadSheet cell extension with white cell backgrounds instead of black ones.
This example should be useful for learning how to write your own SpreadSheet cell
extensions, for defining custom SpreadSheet behaviors.

Listing 11.10: WhiteSSCell Example

//
// WhiteSSCell . java
//

/∗
You can get the DisplayImpl from a Bas icSSCel l (a spreadsheet c e l l)
by c a l l i n g Bas icSSCel l . ge tDisp lay () . However , whenever a Bas icSSCel l
sw i t che s dimensions , a new DisplayImpl must be i n i t i a l i z e d . So , the
best way to ensure the spreadsheet always has c e l l s with white

10 backgrounds i s to make a s imple extens i on .

Below i s an extens i on o f v i sad . s s . FancySSCell that does the t r i c k .
∗/

137

http://www.ssec.wisc.edu/~curtis/examples/SurfaceAnimation.java

import java . io . ∗ ;
import java . awt . Frame ;
import java . rmi . ∗ ;
import visad . ∗ ;
import visad . formula . ∗ ;

20 import visad . ss . ∗ ;

/∗∗ An extens ion o f v i sad . s s . FancySSCell f o r c e l l s with white backgrounds . ←↩
∗/

pub l i c c l a s s WhiteSSCell extends FancySSCell {

/∗∗ Extended from visad . s s . FancySSCell . ∗/
pub l i c WhiteSSCell (String name , FormulaManager fman , RemoteServer rs ,

boolean slave , String save , Frame parent) throws VisADException ,
RemoteException

{
30 super (name , fman , rs , slave , save , parent) ;

}

/∗∗
∗ Extends v i sad . s s . FancySSCell . cons t ruc tDi sp lay so that whenever a
∗ new DisplayImpl i s constructed , i t s background i s s e t to white .
∗/

pub l i c synchronized boolean constructDisplay () {
boolean success = super . constructDisplay () ;
i f (success) {

40 DisplayRenderer dRenderer = VDisplay . getDisplayRenderer () ;
t ry {

// s e t background co l o r
dRenderer . setBackgroundColor (1 . 0 f , 1 . 0 f , 1 . 0 f) ; // white
dRenderer . setBoxColor (0 . 0 f , 0 . 0 f , 0 . 0 f) ; // black

}
catch (VisADException exc) { exc . printStackTrace () ; }
catch (RemoteException exc) { exc . printStackTrace () ; }

}
re turn success ;

50 }

pub l i c s t a t i c void main (String [] args) {
SpreadSheet . setSSCellClass (WhiteSSCell . c l a s s) ;
SpreadSheet . main (args) ;

}

}

Download code: WhiteSSCell.java

138

http://www.ssec.wisc.edu/~curtis/examples/WhiteSSCell.java

Part IV.

Other helpful stuff

139

	Installation Instructions
	Introduction
	Downloading the VisAD Source Code
	Building VisAD
	Building Native Code for the HDF-EOS and HDF-5 File Adapters
	Building Native Code for Applications
	Downloading VisAD Classes in Jar Files
	Problems

	Ugo Taddei's VisAD Tutorial
	How to use this Tutorial
	Introduction to VisAD
	Overview
	Designing a Typical VisAD Application
	Creating Data
	Displaying Data
	Interacting with Data
	Summary

	Our First VisAD Application

	The Basics
	Drawing scales and using units for RealType
	Scaling axes
	Plotting points by using a different MathType
	Using a ConstantMap to Change Data Depiction Attributes
	Using a SelectRange Map to limit plotting and adding two DataReferences to a display
	Extending the MathType and using Display.RGB
	New Units, and changing line width with GraphicsModeControl
	Plotting two quantities on same axis
	Using a Gridded1DSet
	Using a RangeWidget
	Using a SelectRangeWidget

	Two-dimensional Sets
	Handling a 2-D array of data: using an Integer2DSet
	Continuous 2-D domain values: using a Linear2DSet
	Color components: using different DisplayRealTypes
	Mapping quantities to different DisplayRealTypes
	Using IsoContour
	Controlling contour properties: using ContourControl
	IsoContours over image
	Using the GraphicsModeControlWidget
	Combining color and isocontour in an extended MathType

	Three-dimensional Displays
	Animation
	 Interaction

	Other VisAD Tutorials for Java Programmers
	The VisAD DataModel Tutorial
	Introduction
	Scalars
	Real (actual) numbers
	Estimating Errors
	Using Units

	Tuples
	Making the MathTypes
	Using numbers
	Arithmetic with Tuples

	Sets
	Making a Set
	Set methods

	Functions
	Sampling modes

	Parting points...

	The VisAD DataRenderer Tutorial
	Overview of DataRenderers
	Reasons for Non-Default DataRenderers
	How to Avoid Writing Non-Default DataRenderers
	DataRenderer Constructors
	ShadowTypes
	DisplayRealTypes
	General DataRenderer Theory of Operation
	General ShadowType Theory of Operation (KEY SECTION)
	Direct Manipulation Theory of Operation

	The VisAD Cookbock
	Curtis Rueden's example apps
	Additional VisAD examples
	AnchoredPoint
	CursorSSCell
	FormulaEval
	IrregularRenderTest
	LinearRenderTest
	MiniDataServer
	RadialLine
	RiversColor
	SurfaceAnimation
	WhiteSSCell

	Other helpful stuff

