
Adapting a Scientific Data Server to Life in the
Cloud-Computing Environment

James Gallagher
and David Fulker
and Nathan Potter

OPeNDAP
165 Dean Knauss Dr.

Narragansett, RI 02882-1124
jgalagher@opendap.org
dfulker@opendap.org
npotter@opendap.org

Deirdre Byrne
and Jefferson Ogata

and John Relph
NOAA NODC

1315 East-West Highway
Silver Spring, MD 20910-3282

deirdre.byrne@noaa.gov
Jefferson.Ogata@noaa.gov

John.Relph@noaa.gov

Abstract—This paper provides a work-in-progress report on
a collaboration between OPeNDAP, Inc and NOAA’s National
Oceanographic Data Center to prototype serving data stored
in cloud computing environments. We present the design of a
prototype that supports both a web-browser and an OPeNDAP
server accessing those data. An important constraint on the
design is to limit vendor lock-in so a final implementation can
be realized on a cloud platform internal to NOAA should that
be required.

I. INTRODUCTION

In mid-October 2012 OPeNDAP, Inc and NOAA’s National
Oceanographic Data Center (NODC) began looking at using
cloud computing services to provide access to data that NODC
currently hosts on its own computing resources and serves
using OPeNDAP’s software. This is a work-in-progress report
on that project. In this paper we will describe the OPeNDAP
data server that implements the Data Access Protocol (DAP)
which provides I/O middleware for scientific data, its use
within NOAA and some background on Cloud Computing
systems. Following that, we will describe the project and
present our results to date.

A. OPeNDAP background

OPeNDAP is a non-profit corporation that was formed at
the conclusion of the Distributed Oceanographic Data System
(DODS) project started at The University of Rhode Island
Graduate School of Oceanography. One key result of the
DODS project was to develop an I/O middleware layer that
could be used to move scientific information stored in a variety
of formats (often, but not always ‘self describing’) from a
remote server to a client application. Designed in 1994, this
I/O layer was dubbed the Data Access Protocol (DAP) and has
been in use for nearly twenty years in the oceanographic and
atmospheric communities; in 2007 NASA adopted DAP as a
‘community standard’ [1]. DAP defines three request/response
pairs that, taken together, provide access to the data and
metadata that make up a particular dataset. Using DAP,
clients access datasets using URLs, where each dataset has a

single URL and different requests for responses are made by
appending specific extensions to the URL as well as adding
additional ‘constraint’ information to the URL in the query
string. For both data and metadata access, clients can subset
any DAP-accessible dataset on the fly, retrieving just the
variables, or parts of variables, they want. Each request made
using DAP is independent of any previous request (DAP is a
stateless protocol) although many clients request one or both
of the metadata responses before making any data requests
as this helps formulate sensible constraints for the request.
A complete description of the protocol is beyond the scope
of this paper, but one can be found in DAP 2.0 specification
document [1]. Several other organizations have implemented
DAP-enabled data servers or clients using several different
programming languages.

Part of the interest in adapting OPeNDAP’s data server to
the cloud stems from the DAP’s ability to subset data. Because
the protocol supports subset operations on-the-fly, users often
transfer smaller data volumes than when downloading com-
plete files. Since commercial cloud services charge, in part,
based on data volume transferred, a data server/protocol that
helps minimize transfer volumes is attractive.

II. OVERVIEW

The Silver Spring (MD) office of NODC uses both web/ftp
and OPeNDAPs Hyrax to provide data-access services for
some 80 TB of oceanographic data, and access statistics show
average monthly transfers totaling 17.8 TB (with significant
month-to-month variation).1 As the data volumes kept by
NOAA increase, and interest in long-term (climate) obser-
vations and reanalyses rises, they continue to look for cost
effective ways to provide as much information on-line (or near-
line) as possible. Cloud computing offers one technology that
might help balance accessibility, flexibility and cost. In this
project to-date, we have examined several issues surrounding

1This is only a partial picture of NODC’s activities and holdings, as NODC
includes NCDDC, the NOAA Central Library, and a data distribution site in
Hawaii.



running the OPeNDAP data server in a cloud computing
system. While focused on a specific data server and cloud
provider, our results can be applied to other systems that
handle data that are roughly equivalent in size and granularity.

Our work so far has used Amazon, Inc.’s cloud system,
but we strived to not base our investigation on its proprietary
features. We want these results to be applicable to as many
of the emerging cloud computing software stacks as possible,
including open source alternatives to commercial software that
NOAA itself might deploy internally.

By ‘cloud computing system’ we mean computing resources
where virtual computers can be used for very short periods
of time, down to the granularity of a single processing task.
Similarly, we assume these systems include storage capable of
scaling almost infinitely to meet demand. In both cases these
resources can be acquired and released incrementally on an
as-needed basis using either manual (i.e., operator-configured)
or software control.

Because cloud systems provide ‘virtual hardware,’ some
architectural components that are conceptually familiar take
on novel characteristics in cloud systems. For example, while
Amazon’s cloud infrastructure provides virtual computers
(called Elastic Compute Cloud (EC2) instances) that are
effectively drop-in replacements for conventional hardware
running Linux, it also provides two kinds of storage that offer
features most users don’t have on their desktops. Amazon’s
S3 and Glacier storage systems provide storage for very large
data volumes but with significant restrictions when compared
to spinning disks. The S3 system provides a ‘bucket based’
storage system where each bucket can store any data object up
to 5GB and where there is (in most scenarios) no limit to the
number of buckets. Unlike a traditional Unix file system, S3
does not support a hierarchical organization scheme; in many
respects it more closely resembles a highly-scalable key-value
pair storage system [2].

The Glacier storage system is similar to S3 in that it
provides a ‘flat’ storage model, but it behaves more like a
near-line storage device (e.g., like a robotic tape drive). With
Glacier, data-access latencies can be four hours. [3, p.40] Ama-
zon’s cloud environment offers two other storage technologies:
virtual disks, bundled with EC2 compute instances, which lose
their contents when the instance is retired; and Elastic Block
Store (EBS), which simulates a disc drive, retains data between
uses, and may be bound to different EC2 instances at different
times. Lack of persistence makes virtual disks inappropriate
for the problem at hand. Though EBS offers lower latency, its
size limitations and costs make it less interesting than the S3
and Glacier alternatives in the NODC context.

In the first part of this project, described by the rest of this
paper, we have extended the OPeNDAP data server to work
with S3. In continuing work we are expanding the project
so that the server works with data stored in Glacier as well.
We found that mapping traditional hardware concepts onto the
cloud environment worked well for computing processes but
less so with the S3 or Glacier storage devices. Several systems
that emulate traditional Unix file systems while using S3 as

the underlying data store were evaluated in this study, but they
proved to be cumbersome to use with S3. We implemented an
initial prototype based on the S3FS [4] user-space filesystem
but found that it had slower data access times than the native
interface provided by Amazon. We developed an approach that
leveraged the inherent characteristics of S3 and provided, using
XML documents to map data files to S3 items, more flexibility
than S3FS.

III. IMPLEMENTATION

A. Constraints

There are several APIs available from Amazon and third
parties that can be used to read and write information with
S3. We want to limit our implementation to tools that will
introduce the minimum limitations going forward. A tool that
interoperates with other tools would be favored over one that
does not.

Even though this project used Amazon’s cloud system,
we do not want to limit our results to any one vendor. For
example, Amazon’s system is distinctly different from the
OpenStack cloud system used by RackSpace; we would not
want our results to apply only to Amazon and be meaningless
in the context of RackSpace/OpenStack. Its worth noting that
OpenStack is open source software, and it is reasonable to
imagine NOAA using it to run its own cloud infrastructure
and thus compatibility (at least conceptually) with OpenStack,
in particular, is very desirable.

B. Use cases

There are two essential use cases we examined: Simple web
access and Access using OPeNDAP. Note that we did not
examine use cases regarding moving data into the cloud. This
was intentional because we wanted solutions that were not
predicated on how data got in the data stores.

C. Design

We found that Amazon and OpenStack both have a number
of APIs—both bundled and third party—that simulate tradi-
tional Unix device behavior for the various CPU and storage
devices. The CPUs (i.e., Virtual Machines) are, in fact, Linux
VMs and are very easy to work with.2 The storage devices are
a different matter, however. The EBS behaves most like typical
Unix disk drives, but its cost and—especially—its limited
capacity 1 TB per virtual disk) make it quite impractical for
large-scale data provision as at NODC. The S3 and Glacier
storage devices are noteworthy because they provide nearly
limitless capacity at low cost, but their interfaces and behaviors
are very different from typical Unix file systems.

Furthermore S3 and Glacier are so distinct that we decided
to study them separately, postponing the latter as discussed in
the section titled “Future Directions: Glacier”. S3 provides a
flat data store where the “total volume of data and number of
objects you can store are unlimited. Individual Amazon S3

2MicroSoft’s Azure cloud provides Windows VMs. In other work we have
run Hyrax on these using Cygnus, so they can be treated as if they provide a
Unix environment as well.



Catalog 

Data 

S3 
HTTP GET & HEAD requests

Fig. 1. XML catalogs and data files within S3. Web access is completely
transparent given that the catalogs can be rendered as HTML by a browser.

objects can range in size from 1 byte to 5 terabytes. The
largest object that can be uploaded in a single PUT is 5
gigabytes” [5, “How much data can I store?”] S3 provides
a REST/HTTP API and a SOAP API. S3 also provides access
control at the bucket level. There are a number of User-
space file systems that provide a traditional Unix file system
interface for S3. We decided against these because they violate
our implementation constraint against vendor lock-in. All of
the S3FS tools we found use proprietary encoding—storing
files in buckets along with other metadata—in a way roughly
similar to how a file system formats a hard disk. This means
that for any given S3FS to read data, it has to be used to
write those data too. This level of lock in was something we
wanted to avoid very much. Of course, for projects where data
are ephemeral, this poses no problem and it is easy to see
how these interfaces would be very appealing (an affordable
and virtually limitless Unix file system) that can be used by
existing software with no modification and an interface well
understood by programmers.

Our solution is a) to map the file structures of NODC’s
source datasets—which currently reside on typical file systems
(sometimes in very large files)—onto unique sets of S3 Ob-
jects, b) to fully describe these mappings via XML documents
(dubbed Catalogs) stored in separate Objects and c) to perform
all actions on data and Catalogs via the S3 REST HTTP
interface. By allowing Catalogs to reference other Catalogs
(recursively), as well as to reference data-containing Objects,
this solution yields a simple, hierarchical storage and retrieval
system (Figure 1). In fact, without relying on proprietary
components, this is similar enough to a Unix file system for
OPeNDAP’s Hyrax to employ it with minimal modification
(Figure 2).

IV. ANALYSIS

The simple solution of using XML files as catalogs provides
a number of interesting benefits. The data can be both written
and read using only the S3 HTTP API. By accessing the XML
catalog files and rendering them as HTML, a browser can be
used to download data from S3 with no client software beyond
a web browser to perform simple HTML link traversal. The
Web browser experience using this solution is no different (for
the user) than any website that provides file downloads using

S3	
  
OPeNDAP	
  
Server	
  

catalog	
  
cache	
  

Data	
  File	
  

User	
  data	
  
Request	
   Data	
  Access	
  

Data	
  Slice	
  

EC2	
  	
  

data	
  
cache	
  

Fig. 2. Data requests made to the OPeNDAP server can easily be handled
using a simple modification of the server to process the catalog files and
redirect accesses made by the server.

HTTP. Because HTTP is part of the S3 interface, there is no
need to run a separate web server process to support browser-
based access using these XML catalog files. The only software
that is specific to this solution is the code that writes the XML
files. Note that our XML catalogs (currently stored in S3)
could just as easily be kept on any of Amazon’s alternative
(lower latency) storage systems, potentially reducing the costs
of indirection. Because our Catalogs are small, the cost of
doing this would be insignificant.

OPeNDAP’s data server has modules that access different
kinds of data stores, including one that can read from a web
service using HTTP GET. The data server module reads files
named in the XML catalogs from S3 using HTTP, caches those
files and then passes control to one of its other modules to
extract data from the files. Of course, the file format must be
understood, but for all of the data used in this trial, that was
the case (netCDF, HDF4). The only modification we made to
the Hyrax software was so that it could process the catalog
files.

The combination of these two access methods is particularly
strong because many of NODC’s uses are accustomed to a
simple web browser interface for downloading files. NODC
statistics indicate that data transfer-volumes are significantly
less3 when acquisition occurs via OPeNDAP protocols(2)
because the DAP subset-creation options allow users to re-
trieve only the data they need (in contrast to web/ftp, where
retrieving whole files is the only option). This difference
may be especially important in cloud environments such as
Amazon’s, where outbound traffic volume is a major cost
driver.

A. Comparing HTTP GET Against S3FS (as Access Methods
for S3)

Because our initial prototype (see the “Overview” section)
was constructed using S3FS, the more recent implementation
over HTTP GET created an opportunity to study performance

3In April 2013, 21 million files were accessed, of which about 5% (1.1
million) were DAP-style retrievals.



TABLE I
ACCESS TIMES USING S3FS AND HTTP GET FOR 100 SATELLITE

IMAGERY DATA FILES.

S3FS HTTP/GET

Total transfer time 405s 27s

differences between these two mechanisms for S3 data access.
Our comparison was built with command-line tools (cp, curl
and time) and the copying of 100 ”files” (from S3 to
EBS), where each file was drawn from a typical NODC data
collection. Under multiple and varied tests, the latencies of
S3FS (with caching disabled) were an order of magnitude
higher than those measured with HTTP GET (see Table I),
despite the expense of our Catalog-based indirection.

Unsurprisingly, similar tests of S3FS with caching enabled
showed enhanced performance, but only when the same file
was accessed multiple times. In those cases the S3FS latencies
were actually better (by over 50%) than those measured with
raw HTTP GET, but the differences are indistinguishable when
HTTP GET is augmented with front-end caching software.

Clearly, S3FS simplifies development by simulating a tradi-
tional, cached Unix file system, but the performance penalty
is very high unless it is known that most of the requested
data will remain cached. For NODC it is clear that HTTP
GET (with a caching front end) is the optimal choice, offering
the lowest (mean) latencies for any given cache size without
introducing unreasonable implementation complexity.

As expected, turing on S3FS’s caching system increases its
performance when the same file is accessed more than once.
Our tests show that while the initial access is slightly more
costly with caching turned on, subsequent access to the same
data are much faster (458 seconds for the initial copy of 100
data files compared to 13 seconds for copying files cached by
S3FS). Note that for these tests, S3FS was configured to cache
to an Amazon EBS instance—a realistic scenario. However, if
HTTP GET is paired with a software front-end that caches the
retrieved files, its cached accesses costs are indistinguishable
from those of S3FS.

From these results we conclude that S3FS presents a clas-
sical tradeoff in ease of use versus performance. It enables
a system to work with data in S3 as if it is reading from a
traditional Unix file system, but optimal performance is highly
dependent on having most of the data to be accessed stored in
its cache. Using HTTP offers much faster initial access times
(and equal performance for cached files) and thus can achieve
the same mean performance with a smaller cache size or better
performance with the same cache size.

B. Security

Security issues are always present with systems that use
remote servers to provide access to data. One issue our solution
presents is that data previously accessed using only a local
file system are now accessed using URLs and thus those data
might be anywhere on the web. While our implementation
limited the data to our S3 instance, in a more general case one

of the catalog files could contain URLs to places other than
S3. The data server used a white-list to ensure that it only read
data from known trusted sources (i.e., the S3 data store), and
that mitigates the risk considerably, but the design potentially
exposes what has previously been an unexposed interface of
the server. That is, in previous uses of the server, the data files
and the interfaces that access them are assumed to be private
and not writeable by third-parties. However, using this design,
if the XML catalog files are compromised and the server’s
white-list not used, it would be possible to expose the server
to a malicious data file. The data server module we used is
specifically designed for use within a LAN and to only access
known hosts, but these protections are only as secure as the
server’s configuration files. This illustrates a vulnerability, not
just for OPeNDAP’s server, but for any system that accesses
S3 via HTTP GET: such systems must be protected against
spoofs that could trigger reading from arbitrary web locations.

C. Future directions: Glacier

Adapting OPeNDAP’s data server so that it can efficiently
serve data from S3 proved to be fairly straightforward, largely
because the data server supports reading data using HTTP
GET; the only additions to the software involved processing
the XML catalog files. Glacier, however, will likely be another
matter. Because Amazon’s Glacier data store resembles a near-
line tape system, the server’s behavior will have to change at a
fairly fundamental level. The DAP was designed for use with
on-line data, so the servers and clients expects all responses to
be sent or received immediately. Serving data from Glacier, or
any near-line device, will violate this assumption. To address
this issue, as part of the NOAA-funded project that has
support the work reported here, we have extended the DAP to
support asynchronous accesses and are working on a prototype
interface to Glacier using those extensions.

V. CONCLUSION

So far we have implemented a prototype interface that can
efficiently serve scientific data stored in Amazon’s S3 data
store. By using the simple HTTP GET interface Amazon
provides, we are able to devise a single catalog system that
provides a seamless web interface to the data and a high-
performance interface for our data server. We did this while
avoiding vendor lock-in associated with user-space filesys-
tems, which store data in S3 in what is effectively a proprietary
form. The cost of the design was some effort to write the XML
catalog files that organize the data in S3 and a modification
of our data server to use those catalogs

ACKNOWLEDGMENT

We would like to thank NOAA’s National Environmen-
tal Satellite Data and Information Service Program Office
(NESDISPO) for funding “OPeNDAP-Unidata Linked Servers
(OPULS): Aligning, Linking & Integrating Open-Source Soft-
ware for Web-Based Scientific Data Exchange” (CFDA Num-
ber: 11.440) that enabled this work.



REFERENCES

[1] J. Gallagher, N. Potter, T. Sgouros, S. Hankin, and G. Flierl, “The
data access protocol—DAP 2.0,” NASA ESE-RFC-004.1.1, 2007, Octo-
ber 2007, available at: https://earthdata.nasa.gov/our-community/esdswg/
standards-process-spg/rfc/esds-rfc-004-dap-20.

[2] Amazon, Inc., “Working with amazon s3 objects,” http://docs.aws.
amazon.com/AmazonS3/latest/dev/UsingObjects.html, March 2006, ac-
cessed on 30 August 2013.

[3] ——, “Amazon glacier developer guide api version 2012-06-01,” http:
//awsdocs.s3.amazonaws.com/glacier/latest/glacier-dg.pdf, June 2012, ac-
cessed on 5 September 2013.

[4] “Fuse-based file system backed by amazon s3,” https://code.google.com/
p/s3fs/wiki/FuseOverAmazon, accessed on 30 August 2013.

[5] Amazon, Inc., “Amazon simple storage service faqs,” http://aws.amazon.
com/s3/faqs/, 2013, accessed on 30 August 2013.


