Version:

Date:

Author:
Title:

Contact:

MACDDAP - Translation Services
Design

1.2
16t April 2009

Jason Lohrey
Chief Technology Officer, Arcitecta

jason.lohrey@arcitecta.com

Revision History

Version Date Author Description
0.1 16-Mar-2009 Jason Lohrey Initial
1.0 30-Mar-2009 Jason Lohrey = Completed the Graphical User
Interface section. Added sections 5
(authentication and authorization)
and 6 (reporting).
1.1 15-Apr-2009 Ray Williams, Incorporated minor spelling and
Jason Lohrey, grammatical corrections after
Pauline Mak review by Ray Williams.
Emphasize that the translation is
for metadata, not data.
1.2 16-Apr-2009 Jason Lohrey Input from Pauline Mak -
Expanded the functional
translation example to include
geospatial datum transform.
Added a paragraph defining the
value of metadata transformation
without corresponding data
transform.
Table of Contents
1. INTRODUCTION ...cocciiiiiimisnimimsmsmsmnsssesssassassmssnssnsses 3
1.1. WHAT ARE THE “TRANSLATION SERVICES"? ..evuurrirmsssess 3
1.2, TECHNOLOGIES tvvvtveeeeeeeeeeesessessesssssssessssssssssssssssssssssssessessess44444444445555 58818 R R ERRRRRRRR RS SS 4
2. TRANSLATION FRAMEWORK.....cccummmmmmmmmmsmsmsssssmssens 5
2.1, TRANSLATION COMPONENTS w.cuuuuueeeseesseeesesesssssssssssssssssessessessess 5
2.2. COMPONENT INTERCHANGE FORMAT w.ccrrrrrrrrreressessesssssssssssssssssssssssssssess 6
2.3, TRANSFORMING DATA eouuuuuuuusisrsssesseseeessssesessssesssess 7
o 20 0 0 9
4. INTERFACEScciiiismnmimimsnmsnmsemsssessssssssassassssnssnnsnssnnsnssns 11
4.1. COMMAND LINE INTERFACES ccssssssetteeeeeeeeseessesees 11
4.2, GRAPHICAL USER INTERFACES ccvvesseeeeeeeeseesessssssssssssssesssesses 11
4.3. APPLICATION PROGRAMMING INTERFACES .ovvvvveseeseseessssssssusmsssssssssssssssssssessesssssssssssssssssssssssssssssses 12
5. AUTHENTICATION AND AUTHORIZATIONccoviiminirnsssnmsmssssssmssssssssssssssssssssssssasses 13
5.1, TRANSLATION SERVICES ..oeuuuuuuuuussussssssseessssesesseseseessess 13
5.2. EXTENDING THE PLATFORM.....uuuuissssseessssesesssssssessses 13
5.3. ADMINISTERING TRANSLATION SERVICES w.cvvvvrrrerrereesesssssssssssssessessasssssmsmssssssssssssssssssssssssssssssses 13
6. REPORTING ...cciiiitisissmssmsmss st ssssssssssssssssssssssssssssssssnsansnns 14

1. Introduction

There are hundreds, probably thousands, of millions of sets of data acquired by a
raft of research disciplines over many years that need, or will need to be,
conformed to different standards for cataloguing or describing those data sets.
That process is ongoing, as new standards continue to emerge into the future.

When the target form has the same, or a subset of information, then this
translation can generally be automated. However, the output form is often a
superset of the input form. This case is increasingly more prevalent as the value
of contextual metadata is recognized. Consequently, in order to produce the
output form, the data (which may have been acquired decades ago, or by devices
and formats that do not have the requisite or desired context) will require the
provision of additional information.

Typically, the supply of additional information requires human intervention.
Whilst it may take only tens of seconds to a few minutes to enter the required
information, this cost becomes prohibitive when multiplied by hundreds of
millions of data sets. It can be prohibitive, and perhaps error prone, with even a
few thousand translations.

Since the inputs and outputs can be arbitrary, this may at first seem an
unbounded problem. However, the act of translation is a process that has
common patterns, invariant of the types of inputs and outputs. There are
opportunities to optimize and consequently minimize the amount of manual, and
costly, human intervention.

The goals of the Translation Service are to minimize the effort and cost required
to translate data from one form to another.

Translation Services are a component of MACDDAP project and has been funded
through the Australian Government NCRIS programme and sub-programme
NeAT.

Translation Services provide a community accessible Internet accessible suite of
self-service tools to facilitate the translation of data sets and associated metadata
to some other “form”.

Example forms might include:

* Open Geospatial Consortium (OGC) formats
[SO 19115 metadata standards

NetCDF datasets

* Etc

MACDDAP - Translation Services 3/14
Version 1.2 - 16t April 2009

Translation Services are constrained to descriptive and contextual information
(metadata), rather than the non-descriptive data such as measurements,
acquisitions, samples, etcl.

Translation Services are accessible via browser based and command-line
interfaces to:

* Allow the creation of one or more profiles for translations between
different input and output forms. A profile:
o Is associated with a user or organization.
o Allows the selection of:
= Input and output types, from an extensible set of supported
formats.
= Specification of data sources and destinations from an
extensible set of supported repository types.
o Specifies additional metadata and vocabulary mappings required
to map to the output format.
* Translate an input data source using a specified profile.
* Register data sources for automatic harvesting and translation.
* Register new handlers for input and output formats.

As indicated, the types of inputs and outputs data could be arbitrary. The
Translation Services will provide an open Application Programming Interface
(API) to allow the development and plugging in of handlers and transformers for
different types of input and output data. The Translation Services project will
provide some exemplar transformations using the API with the expectation that
additional handlers will be developed over time as required by stakeholders.

The Translation Services use the following technologies:

* Browser-based interfaces utilize JavaScript

* The Translation Service server is written in Java. Plug-in components
utilize Java. It is possible to use the Java Native Interface (JNI) to make
direct library calls to any C/C++ library. It is also possible to execute any
other application by forking a sub-process.

1 Whilst it is out of scope for this project, it is worth considering whether it is
feasible or not in the future to extend the techniques applied to metadata to all
data within a dataset as that will test the generality of the translation framework.

MACDDAP - Translation Services 4/14
Version 1.2 - 16t April 2009

2. Translation Framework

Translation Services provide a framework that encapsulates the common aspects
of the process of translation of metadata. It enables people to establish and reuse
contextual information across multiple translations.

An individual often deals with data generated:

¢ From similar sources,
¢ From the same authors,

¢ In similar formats.

The information that is common should be captured and saved for reuse with
other sets of data. That is, there will be some initial effort to populate missing
data for a translation that if saved, can be re-used for future translations.

2.1. Translation Components

Profile

!
e | @)

U

Additional :> Transform b Vocabulary
Data Mapping

Figure 1 - Translation Components

Whilst the process of translating might be obvious, it's worth identifying the
components shown in Figure 1 - Translation Components and considering the
dependencies therein. Since there are an arbitrary number of inputs, outputs,

MACDDAP - Translation Services 5/14
Version 1.2 - 16t April 2009

and transformations, the Translation Framework should not “know” about these
formats. Rather, an Input or Output handler that is specific to that format should
provide the capability for reading and writing a data format. Equally, the input
and output handlers should be independent of each other.

The process of generating an output is handled by a Transform. A transform is a
set of instructions that:

* Defines the set of data from the Input,

¢ Defines what Additional Data should be included,

* Defines any changes in the Vocabulary Mapping, and

* Specifies the recipe for combining the input and additional data to
produce the output.

In order to select the correct additional data and vocabulary for a
transformation, a profile is determined by either:

* Manual selection by the translation requestor, or
* By association with the source of the input.

Metadata must be represented in some common, intermediate, format that can
be passed from an Input, Additional Data and Vocabulary to the Translation
Services Framework, Transform and Output. The initial inclination might be to
suggest that the Extensible Markup Language (XML) is used for interchange.
However, XML has some disadvantages, namely:

* [tisatext-based standard and will be more verbose and less efficient than
binary representations. This can be a problem where there is a lot of
metadata.

* XML requires each element to be closed with a matching end-element
which makes it harder to stream very large documents. That is, XML
documents are typically fully constructed before passing to the receiver?.

Rather than XML, the Translation Services will use a hierarchical key/value pair
stream (DataStream) to represent the Metadata for interchange between the
components. The interface to this data representation for does not prescribe a
particular storage format - it is possible to implement the interface using XML,
or some other binary representation. Like XML, the DataStream supports:

* Key/Value pairs
* Hierarchical data representation

The DataStream representation is data type independent. Whilst the underlying
representation may be typed, every type must be convertible to/from a string.
Transforms will not be concerned with type, but rather mapping of structure and
vocabulary.

2 There are some programming interfaces that allow streamed XML, but they are
not the norm.

MACDDAP - Translation Services 6/14
Version 1.2 - 16t April 2009

If required, a DataStream may be easily converted from/to XML. This also allows
a given transform to utilize the Extensible Stylesheet Language (XSL)
Transformations (XSLT).

A transformation, T, generates some Output, as a function of the pair:
Output = T(Profile,Input)
The Profile defines:

Profile = (Input type, Transform, Additional Data, Vocabulary Mapping,
Output type)

An Input will produce a DataStream that is passed to a specified Transform. The
transform will apply some form of mapping to create the set of elements
required by an Output. The Transform passes a DataStream to the Output.

It is possible that no transformation of the DataStream is required in order to
generate an Output, in which case the Transform simply passes the DataStream
through unmodified.

The DataStream may or may not have sufficient elements to generate the
specified Output. In this case, additional data will be required. Provided the
Profile has one, the Transform will be supplied with a DataStream from
Additional Data. Where no additional data exists, or is incomplete, the
transformation will not proceed and the requestor will be notified of the missing
elements. The requestor may then augment the Profile or create a new Profile.

The names of elements and their values may need to be transformed for an
Output. For example, one Input may describe a geographic coordinate using “Lat”
and “Lon”, whereas the Output may require “Latitude” and “Longitude”. In this
case, the name of the element will need to be changed. That mapping is
contained in a Vocabulary Mapping.

Similarly, the metadata values may need to be converted. There are two kinds of
conversions to consider:

(a) A simple term mapping - for example, an Input may use the terms “M”,
and “F” to represent male and female respectively, whereas a the Output
may expect “Male” and “Female”.

(b) A functional mapping - for example, changing upper and lower bounds
for temperature from degrees Celsius to degrees Kelvin, or changing the
datum for a spatial extent from NAD 27 to WGS84.

(A) is really a special case of (b).

The (a) case can be handled with a simple dictionary. The (b) case will require
the ability to provide an arbitrary set of instructions for transformation. The
Translation Services expose an API to allow Transform creators to plug in
software to perform functional mappings.

It should be possible for functional mappings to be individually registered,
enabling a transform creator to reuse “stock” transforms; e.g. conversion from
degrees Celsius to degrees Kelvin.

MACDDAP - Translation Services 7/14
Version 1.2 - 16t April 2009

The translation of values for the metadata does not transform the underlying
data (but could be considered as future enhancement). However, this does allow
for the important capability for discovery of resources using a common
terminology. The conversion of the data to another form is an activity outside of
the scope of this project - which may not be required since applications dealing
with the data may already perform those conversions.

MACDDAP - Translation Services 8/14
Version 1.2 - 16t April 2009

3. Profiles

The power of the Translation Services lies in the ability to build up and save
contextual information for use across multiple data sets and for future reuse.
That contextual information is stored in a Profile that is associated with a
registered “user” within the system3.

Profiles can be later used/reused for sets of data with the same characteristics.
For example, profiles can be used for data sets sharing the same authors, same
custodians, fixed vocabulary mapping etc.

Since a sub-set of those characteristics might be common to different sets of
data, Profiles may be created from other Profiles to aggregate settings. For
example, there might be a profile that specifies the author and custodian, and a
sub-profile the deals with the specific type of data set.

Profile A:
Author: John Smith
Org: ABC

Profile B:
Map: “Lat” -> “Latitude”
Map: ..

Figure 2 - Aggregating Profiles

A given Profile may aggregate multiple other Profiles.

The ability to aggregate allows the specification and supply of additional
metadata and vocabulary mappings to be modularized.

The Profile is an association of the following:

Input Type The type of input handled by this profile. For
example, the input could be “NetCDF”, “NITF”,
etc. There must exist an input handler for the
type. This is plug-in code supplied to handle that
format.

3 A “user” could be a person or another system.

MACDDAP - Translation Services 9/14
Version 1.2 - 16t April 2009

Transform

Additional Data

Vocabulary Mapping

Output Type

Specifies the relationship between the inputs and
outputs. The transform may specify the inclusion
of Additional Data and may utilize a Vocabulary
Mapping to change the names (and values) of
elements within the Input.

Is a set of metadata elements that must exist in
the Output, but need not exist in the Input. The
Additional Data may override existing elements
in the Input. There may be no extra elements in
the Additional Data.

Defines changes in element names and mappings
for element values. The mapping may be
achieved using a lookup table (LUT), or by some
software that computes the mapping.

Specifies the type of output to be generated.
There must be an output handler for the type.
Output handlers are plug-in modules.

MACDDAP - Translation Services 10/14

Version 1.2 - 16t April 2009

4. Interfaces

Two methods for accessing the services will be provided:

* Command-Line Interface - provides the ability to create profiles, initiate
transfers from the command-line.

* Graphical User Interface — a browser-based interface. This is expected to
be the primary method of utilizing the services.

These interfaces are described in more detail as follows.

The command line interface requires an executable (client) that provides the
same capabilities as the Graphical User Interface, but is simply accessible from
the command line without a graphical interface.

The command line interface allows translation processes to be incorporated into
other “back of house” workflows without human intervention. As with Graphical
User Interfaces, the command-line interfaces require the client to “log into” the
Translation Services server in order to establish account settings.

For more information on the functional services and capabilities, refer to the
section 4.2 Graphical User Interfaces.

A Graphical User Interface exposes Profiles, Transforms etc. through a web-
browser interface.

A typical interaction with the system is as follows:

* Person logs into the system - if they don’t have an account then they will
then they will need to create one. An “account” is required to maintain
personal settings (this is a free service). Account usage is also a good way
of determining whether people are or are not using the service.

* Create one or more Profiles that specify the transformation from one
input to another. This process occurs as follows:

o Select an existing Profile as a template, or create a new one.

o Specify the Input Type - this is selected from a pull-down menu of
the registered type handlers in the system. That list will be
extended over time.

o Specify the Output Type - this is selected from a pull-down menu
of the registered type handlers in the system.

o Specify any Additional Data to be added. The additional data may
be hierarchically organized.

* Specify a source data set, and associate it with a Profile. A source data set
may be provided by one of the following means:

o File upload

o URLreference (URL must be in a form that can be handled by the
Input Type).

MACDDAP - Translation Services 11/14
Version 1.2 - 16t April 2009

* Specify the location of the output, which may be generated by one of the
following means:
o File download
o Requesting the Output Type handler to consume the output. That
is, an Output Type handler may have the capacity to write the
output back to some other location (e.g. database, data server,
etc.).
* Optionally save the combination of Source, Profile Settings and Output (as
another Profile). This profile may be utilized the next time the user visits
the system.

As indicated earlier, a profile may define a subset of the required transformation.
A profile can be composed of other profiles, with specific overrides and supply of
information that may not have been in the used profiles. That is, a profile may be
incomplete, but contains common information.

Graphical user interfaces will also enable administrative control of the system
(see section 5.3 Administering Translation Services) and for generating reports
(see section 6 Reporting).

Application Programming Interfaces (API) are required to enable the
development and installation of additional:

* Input Type handlers
* Qutput Type handlers
* Functional transformations

The Translation Services Framework will be written in Java. It will expose
interfaces to:

* Add/List/Remove Java Archives (JAR) containing Input Type handlers

* Add/List/Remove Java Archives (JAR) containing Output Type handlers

¢ Add/List/Remove Java Archives (JAR) containing functional
transformations.

A single JAR may contain more than one type of plugin capability. All plugin code
will require descriptive information:

e Version

e Author

* Formats handled
* Usage notes

* (Caveats, if any.

That is, there must be enough information for a Translation Service user to fully
understand whether or not to utilize the handler.

Even though the application development platform is Java, it is possible for Java
to bridge to any other technology.

MACDDAP - Translation Services 12/14
Version 1.2 - 16t April 2009

5. Authentication and Authorization

5.1. Translation Services

The translation services are a publically and freely available. Therefore, a
potential user will be able to setup an account in the system without reference to
any system administrator. Self-served accounts will be able to make use of the
Translation Services, except the installation of additional plugin software (see
below).

5.2. Extending the Platform

The ability to add new code to the platform must be a “controlled” process
requiring authority to do so. If not, the platform may be overloaded with rogue
software that renders the service inoperable.

In order to extend the server through additional format handlers, application
developers must be granted an application developer role.

The Translation Services Administrator must approve the addition of new
software before it is available to translation services users. Such approval may
be granted on a case-by-case basis, or the developer may be pre-approved for all
developed software, without the ongoing need for administration.

5.3. Administering Translation Services

The server will require administration to control who and how people can add
new services to the platform. A specific role of system administrator has the
authority to grant the application developer role to users of the system.

Administrators can also create other administrators.

The contact details for administrators will be clearly visible/available from the
Translation Services interfaces to enable would-be developers to request access
to the system.

MACDDAP - Translation Services 13/14
Version 1.2 - 16t April 2009

6. Reporting

For the purpose of utilization, and capacity planning, Translation Services will be
able to report on the following:

* The number and details of registered users (and their level of authority
within the system)

* The number of translations performed.

* The types of translations performed.

Reports will be run ad-hoc. Reporting should be available to any user of the
system. However, only administrators will be able to see the authority level of
other users.

MACDDAP - Translation Services 14/14
Version 1.2 - 16t April 2009

