
ADDITIONAL NETCDF COMPRESSION OPTIONS WITH THE COMMUNITY 
CODEC REPOSITORY
Edward Hartnett 1,2, Charlie Zender3

1. CIRES, University of Colorado, Boulder, CO 80309, USA, 2. NOAA/ESRL/GSD, Boulder, CO 80305, USA
3. Departments of Earth System Science and Computer Science, University of California, Irvine, CA 92617, USA

Faster, more compressive, 
and lossy compression are 

available for netCDF 
C/Fortran codes, using the 

CCR project.

● Since netCDF-4.0 (2008), netCDF can create files with compressed 
data, using the zlib library.

● Once turned on, the compression/decompression is transparent to 
the user, but does add time to write and read the data.

● Since netCDF-4.7.4 (2020) compression has also worked with 
parallel I/O.

● The upcoming netcdf-c-4.8.0 release contains good support for HDF5 
filters, which can be used to apply additional compression techniques.

● The recently introduced Community Codec Repo (CCR) project 
brings new compression filters to netCDF C and Fortran codes.

Summary

HDF5 Filters

● HDF5 allows chunked data to pass through user-defined filters on the 
way to or from disk.

● Several filters are built in to HDF5 and are supported in netcdf-c: 
checksum, shuffle.

● zlib compression is external to HDF5 but supported as a built-in filter 
with HDF5 and is required in all netcdf-c builds.

● szip compression is supported as a built-in filter if present in HDF5 at 
HDF5 build-time.

● Generic single filter support was added in netcdf-c-4.6.0 (2018), full 
support for multiple filters will be in netcdf-c-4.8.0 (2021).

Role of CCR
● CCR provides a curated selection of useful filters, plus the glue code 

to make them easy to use in netCDF C and Fortran codes.
● CCR provides a single tarball which builds and install the filters and 

the ccr library, containing the glue code.
● User C/Fortran codes can then turn on additional compression, 

similarly to how zlib can be turned on for a variable.
● Writers and readers of the data must have the filter installed, or the 

data cannot be accessed.

Available Filters
● The CCR 1.1.0 release contains the following filters:

○ bzip2
○ Zstandard
○ Bitgroom

bzip2
● Like zlib, is a command line tool and a library.
● Burrows-Wheeler block sorting text compression algorithm, 

and Huffman coding.
● Slower than zlib, but, when used with bitgroom filter, 

resulted in smallest output.

Zstandard
● Open-source compression library from Facebook.
● Similar compression to zlib, but much faster.

Bitgroom
● Bitgroom is pre-filter for lossy compression.
● For float/double only. Cannot be applied to ints.
● It must be used with another compression filter to reduce 

data size.
● Sets unneeded bits to 1/0 (alternates, to keep averages the 

same).
● User specifies number of significant digits to keep, up to 7 

for float, 14 for double.

Performance with Climate Data
● For performance test, copy all 2D/3D float vars from a 

climate data file to new file.
● Then re-read the file.
● Data was January monthly mean output from the first year 

of the Pre-Industrial control simulation of EAMv1, the 
atmospheric component of E3SMv1.

● ~1 GB data file with 353 2D vars (1 x 48602), 65 3D vars (1 
x 72 x 48602).

Conclusions
● Remember: readers of data must also have filter installed!
● For absolute smallest files, bzip2 + bitgroom. But this is 

slow to write and read!
● Use Zstandard for much faster zlib-like compression - 

almost order of magnitude improvement in write speed, 3x 
improvement in read speed.

● Add bitgroom filter for additional lossy compression. 

https://github.com/ccr/ccr


