
Point Observation Data 
Draft 2 
09/11/07 
 
This is a convention for writing collections of point observations to a netCDF file. This builds on section 5 of the CF-1.0 
document, replacing section 5.4 and 5.5 with a more general convention. 
 
A point observation is a data measurement at a specific time and location. Each kind of measured data is placed in a data 
variable. The time and location values are placed into coordinate variables and auxiliary coordinate variables. 

The starting idea, as described in section 5, is to use the coordinates attribute to associate auxiliary coordinate variables with the 
data variables. For example, consider an unconnected collection of points where ozone has been sampled: 

dimensions: 
  sample = 1000 ; 
 
variables: 
  float O3(sample) ; 
    O3:long_name = "ozone concentration"; 
    O3:units = "1e-9" ; 
    O3:coordinates = "lon lat z time" ; 
 
  double time(sample) ; 
    time:long_name = "time" ; 
    time:units = "days since 1970-01-01 00:00:00" ; 
 
  float lon(sample) ; 
    lon:long_name = "longitude" ; 
    lon:units = "degrees_east" ; 
 
  float lat(sample) ; 
    lat:long_name = "latitude" ; 
    lat:units = "degrees_north" ; 
 
  float z(sample) ; 
    z:long_name = "height above mean sea level" ; 
    z:units = "km" ; 
    z:positive = "up" ; 
 
In this example, there are 1000 points in the collection, and we have chosen to name the dimension sample 
to clarify the distinction between collection dimensions and coordinates. The coordinates of the ith sample 
are time(i), lon(i), lat(i) and z(i).  
 
When the data is time ordered, its natural to use time as the sample dimension: 
 
dimensions: 
  time = 1000 ; 
 
variables: 
  float O3(time) ; 
    O3:long_name = "ozone concentration"; 
    O3:units = "1e-9" ; 
    O3:coordinates = "lon lat z time" ; 
 
  double time(time) ; 
    time:long_name = "time" ; 
    time:units = "days since 1970-01-01 00:00:00" ; 
 
  float lon(time) ; 
    lon:long_name = "longitude" ; 
    lon:units = "degrees_east" ; 
 
  float lat(time) ; 



    lat:long_name = "latitude" ; 
    lat:units = "degrees_north" ; 
 
  float z(time) ; 
    z:long_name = "height above mean sea level" ; 
    z:units = "km" ; 
    z:positive = "up" ; 
 
Because time is now a coordinate variable, its values should be strictly monotonic (i.e. the data is sorted by 
time). Formally, you no longer need to include time in the coordinates attribute, since it is known to be a 
coordinate. However, a suggested idiom is to list all coordinates in the coordinates attribute, for clarity. 
 
Data variables may have other dimensions. The following has a 3D wind vector and a character array: 
 
dimensions: 
  sample = 1000; 
  wind_vector = 3; 
  inst_name_strlen = 23; 
 
variables: 
 
  float wind(sample, wind_vector); 
    wind:long_name = "3D wind"; 
    wind:units = "m/s"; 
    wind:coordinates = "lon lat z time"; 
 
  char inst_name(sample, inst_name_strlen); 
    inst_name:long_name = "instrument name"; 
    inst_name:coordinates = "lon lat z time" ; 
 
We define profile observation data as point data that has a vertical dimension in the data, with a constant 
lat/lon (or x/y) location, for example: 
 
dimensions: 
  sample = 1000 ; 
 
variables: 
  float O3(sample, z) ; 
    O3:long_name = "ozone concentration"; 
    O3:units = "1e-9" ; 
    O3:coordinates = "lon lat z time" ; 
 
  double time(sample) ; 
    time:long_name = "time" ; 
    time:units = "days since 1970-01-01 00:00:00" ; 
 
  float lon(sample) ; 
    lon:long_name = "longitude" ; 
    lon:units = "degrees_east" ; 
 
  float lat(sample) ; 
    lat:long_name = "latitude" ; 
    lat:units = "degrees_north" ; 
 
  float z(sample, z) ; 
    z:long_name = "height above mean sea level" ; 
    z:units = "km" ; 
    z:positive = "up" ; 
 
In the above example each sample has the same number of z coordinates, but (possibly) different z 
coordinate values, creating the 2D z coordinate. For the case where all samples have exactly the same z 
coordinate values, it is more efficient, and better to use: 
 
  float z(z) ; 
    z:long_name = "height above mean sea level" ; 
    z:units = "km" ; 
    z:positive = "up" ; 



 
 
There is an important restriction on how an auxiliary coordinate connects to the data variable: the 
dimensions of the auxiliary coordinate must be a subset of the dimensions of any data variable that uses 
it. So z(sample, z) and z(z) are ok as an auxiliary coordinate for O3(sample, z), but neither could be an 
auxiliary coordinate for, say, O3( time). 
 

Time series of station data 
 
Suppose that point data is taken at a set of named locations called stations. The set of observations at a 
particular station, if ordered by time, becomes a time series, and the file is a collection of time series of 
station data. In this case one could use: 
 
dimensions: 
  station = 10 ;  // measurement locations 
  pressure = 11 ; // pressure levels 
  time = UNLIMITED ; 
 
variables: 
  float humidity(time, pressure, station) ; 
    humidity:long_name = "specific humidity" ; 
    humidity:units = "" ; 
    humidity:coordinates = "lat lon pressure time" ; 
 
  double time(time) ; 
    time:long_name = "time of measurement" ; 
    time:units = "days since 1970-01-01 00:00:00" ; 
 
  float lon(station) ; 
    lon:long_name = "station longitude"; 
    lon:units = "degrees_east"; 
 
  float lat(station) ; 
    lat:long_name = "station latitude" ; 
    lat:units = "degrees_north" ; 
 
  float pressure(pressure) ; 
    pressure:long_name = "pressure" ; 
    pressure:units = "hPa" ; 
  
 
There are two problems with this scheme. The first is that each station has the same number of samples 
(times) allocated to it. This is called a rectangular array. When stations have different numbers of samples, 
one is forced to allocate the maximum sample size, and use missing data values. In this example, the 
amount of wasted data is exacerbated by having a vertical (pressure) dimension in the data. Further, if the 
pressure coordinate variable can vary, one must use: 
 
  float pressure(time, pressure, station) ; 
    pressure:long_name = "pressure" ; 
    pressure:units = "hPa" ; 
 
The second problem in this example is that the coordinate values for time are required to be the same for 
each set of measurements at each station. This can be fixed, however, by using 
 
  double time(station, time) ; 
    time:long_name = "time of measurement" ; 
    time:units = "days since 1970-01-01 00:00:00" ; 
  
 
As we try to represent more complicated arrangements of point observations, this issue of rectangular 
arrays often appears. 



 
A different way to handle variable number of samples at each station is to remove the station dimension 
from the data variables, and keep track of the station index for each observation in a separate variable:  
 
dimensions: 
  station = 10 ;  // measurement locations 
  pressure = 11 ; // pressure levels 
  profile = UNLIMITED ; 
 
variables: 
  float humidity(profile, pressure) ; 
    humidity:long_name = "specific humidity" ; 
    humidity:coordinates = "lat lon pressure time" ; 
 
  int station_index(profile) ; 
    station_index:long_name = "index into station dimension"; 
 
  double time(profile) ; 
    time:long_name = "time of measurement" ; 
    time:units = "days since 1970-01-01 00:00:00" ; 
 
  float lon(station) ; 
    lon:long_name = "station longitude"; 
    lon:units = "degrees_east"; 
 
  float lat(station) ; 
    lat:long_name = "station latitude" ; 
    lat:units = "degrees_north" ; 
 
If the pressure coordinate is constant, then 
 
  float pressure(pressure) ; 
    pressure:long_name = "pressure" ; 
    pressure:units = "hPa" ; 
 
If the pressure coordinate can vary for each profile: 
 
  float pressure(profile, pressure) ; 
    pressure:long_name = "pressure" ; 
    pressure:units = "hPa" ; 
 
If its fixed for each station, you’d like to use: 
 
  float pressure(station, pressure) ; 
    pressure:long_name = "pressure" ; 
    pressure:units = "hPa" ; 
 
The station_index variable associates the ith profile with the station at index station_index(i). But lat and 
lon can no longer be considered auxiliary coordinate variables, since they use a dimension that is not 
present in the data variable. Instead, there is an extra level of indirection represented by the station_index 
variable.  So we are really generalizing past previous notions of coordinate variables and auxiliary 
coordinate variables. 
 
Instead of making coordinate variables more complicated, we are going to generalize the underlying data 
model, using concepts from relational databases. In addition to the fundamental data type of 
multidimensional array, we add the data type table, where a table is a collection of variables with the 
same outer dimension. We then define an index join as connecting two tables using a variable in one 
table that holds dimension indices into the second table. Dimension indices are zero based. 
 
Returning to our time series of station data example, we can create a new notation using tables. All 
variables with the same outer dimension, such as: 
 
  float humidity(profile, pressure) ; 
    humidity:long_name = "specific humidity" ; 



  float temperature(profile, pressure) ; 
    temperature:long_name = "air temperature" ; 
  float pressure(profile, pressure) ; 
    pressure:long_name = "pressure" ; 
 
  int station_index(profile) ; 
  double time(profile) ; 
 
are rewritten as: 
 
  table { 
    float humidity(pressure) ; 
      humidity:long_name = "specific humidity" ; 
    float temperature(pressure) ; 
      temperature:long_name = "air temperature" ; 
    float pressure(pressure); 
      pressure:long_name = "pressure" ; 
 
    int station_index; 
    double time; 
 
  } profile (profile); 
 
So a “table variable” is created that uses the profile (outer) dimension. All the variables that have that outer 
dimension become part of the table. Similarly for the station table (for clarity, we stop showing the 
attributes): 
 
  table { 
    float humidity(pressure) ; 
    float temperature(pressure) ; 
    float pressure(pressure); 
    int station_index; 
    double time; 
  } profile(profile); 
 
  table { 
    float lon; 
    float lat; 
   } station (station); 
 
To specify the index join, if we wanted to write pseudo-SQL, we could say  
 
  JOIN profile TO station WITH profile.station_index 
 
where profile and station specify tables with the corresponding dimension, and station_index is a variable 
in the profile table whose values are indices in the station table. In other words: 
 
  JOIN <child dimension> TO <parent dimension> WITH <child.variable> 
 
Of course, none of this is in the netCDF file, it’s just a short hand notation. 
 
Another compact and useful notation is to consider that the tables are nested, and to ignore the mechanism 
by which the nesting occurs: 
 
  table { 
    float lon; 
    float lat; 
 
    table { 
      double time; 
 
      float humidity(pressure) ; 
      float temperature(pressure) ; 
      float pressure(pressure); 
    } profile (*); 
 



   } station (station); 
 
Here the (*) denotes a variable length dimension. All of the profiles inside of a station table are for that 
station. Note that because we are using a fixed pressure dimension, all profiles have a fixed number of 
pressure levels. The values of those pressure levels can vary from profile to profile. If the pressure levels 
were fixed at each station, you would have: 
 
  table { 
    float lon; 
    float lat; 
    float pressure(pressure); 
 
    table { 
      double time; 
 
      float humidity(pressure) ; 
      float temperature(pressure) ; 
    } profile (*); 
 
   } station (station); 
 
If the pressure levels were fixed for all profiles: 
 
  float pressure(pressure); 
  table { 
    float lon; 
    float lat; 
 
    table { 
      double time; 
 
      float humidity(pressure) ; 
      float temperature(pressure) ; 
    } profile (*); 
 
   } station (station); 
 
If the number of pressure levels could vary from profile to profile, we are back in the situation of having to 
set a maximum, then using missing values. Applying the same principles as before we can create another 
table, for example (using nested table notation): 
 
  table { 
    float lon; 
    float lat; 
 
    table { 
      double time; 
 
      table { 
        float humidity; 
        float temperature; 
        float pressure 
      obs(*); 
 
    } profile (*); 
 
   } station (station); 
 
OR using table notation: 
 
  table { 
    float humidity ; 
    float temperature; 
    float pressure; 
    int profile_index; 
  } obs (obs); 
 
  table { 



    int station_index; 
    double time; 
  } profile (profile); 
 
  table { 
    float lon; 
    float lat; 
  } station (station); 
 
OR using CDL: 
 
  float humidity(obs); 
  float temperature(obs); 
  float pressure(obs); 
  int profile_index(obs); 
 
  double time(profile); 
  double station_index(profile); 
 
  double lat(station); 
  double lon(station); 
 
As you can see, there’s a mechanical conversion between these 3 notations (CDL, tables, nested tables).  
 

Using the Unlimited Dimension 
 
The use of the unlimited dimension in the netcdf-3 file format warrants attention because it can have a 
strong effect on performance. Consider the following example: 
 
dimensions: 
  station = 4021 ;  // measurement locations 
  pressure = 30 ; // pressure levels 
  time = UNLIMITED ; // currently 117987 
 
variables: 
 
  float humidity(time, pressure) ; 
  float temperature(time, pressure) ; 
  float pressure(time, pressure) ; 
  int time(time) ; 
  int station_index(time) ; 
 
  char name(station, name_strlen); 
  char desc(station, desc_strlen); 
  double lat(station); 
  double lon(station); 
  double alt(station); 
 
All of the variables using the time dimension are called record variables because they use the unlimited 
(record) dimension.  
 
The layout of the netCDF-3 file format is simple: first the header is written, then the non-record variables 
are each written, then the record variables are written. Non-record variables are written in the order they are 
defined. The entire space must be allocated for them at define time, which is why their dimension sizes cant 
change. Record variables are written one record at a time, where record 0 has all the record variable values 
for index=0, then record 1 with all the record variable values for index=1, etc. The unlimited dimension can 
thus grow by appending to the file.  
 
Since the file layout is quite different depending whether the unlimited dimension is used, the performance 
of reading the data can be quite different. In a worse case scenario, for large files, you might see a factor of 
100 performance difference, depending on your read access pattern (the actual times are highly dependent 



on the caching strategy of the underlying file system). So it is sometimes necessary to understand what the 
common read pattern is and to optimize the file layout for it.  
 
Using the record dimension is often very useful when writing data that arrives sequentially, since the new 
data can simply be appended to the file, and you don’t need to know ahead of time how many records there 
will be. 
 
The decision to use the record dimension or not must not effect the data type or the semantics of the data – 
only access efficiency.  
 

Creating Fast Access to Children 
 
Given a row in a child table, one finds the parent using the parent index variable. However, one must read 
the entire parent index variable to find all of the child rows for a given parent row. For efficiency, one can 
optionally add a way to quickly find all of the child rows for a given parent row, using a linked list or a 
contiguous list. 
 
A contiguous list places all children in contiguous rows, and then adds firstChild and numChildren 
variables in the parent table which hold dimension indices into the child table. For the ith parent row, all its 
children are found at the indices between firstChild(i) and firstChild(i) + numChildren(i). This method is 
recommended as the most efficient way to read all the child rows for a parent, since they are stored 
contiguously. 
 
A forward linked list adds a firstChild in the parent table and nextChild variable in the child table, which 
hold dimension indices into the child table. One reads the firstChild row and follows the links in nextChild 
until the dimension index is less than 0, indicating the end of the linked list. This method is recommended 
when writing data for multiple parents at once, when the total number of children is unknown, so a 
contiguous list is not possible. 
 
A backwards linked list adds a lastChild in the parent table and prevChild variable in the child table, again 
which hold dimension indices into the child table. One reads the lastChild row and follows the links in 
prevChild until the dimension index is less than 0, indicating the end of the linked list. This method is 
recommended for real-time data arriving serially and unpredictably, since one only has track the last child 
for each parent in memory and append the new record, then update the lastChild array when the data has all 
been received. With a forward linked list, one must also rewrite the previous record. 
 
Remember that dimension indices are 0 based.  
 

Specifying the type of data 
 
The table data type and technique of connecting tables through dimension index variables is quite general 
and should be useful for many kinds of data in any domain of science. 
 
Experience has shown that it’s important for visualization and analysis tools and for human understanding 
to classify data into broad categories based on the topology of the collection. We call these data types. We 
haven’t found a systematic or rigorous classification scheme; rather these reflect our experience with 
observational datasets in the earth sciences, strongly influenced by the type of measuring instruments used. 
 
While one could imagine everything as merely a collection of points, it is usually necessary to take 
advantage of whatever structure is found in the data. The structure of the data and coordinate systems 
ideally reflects the connectedness (a.k.a. topology ) of the measurements. This connectedness is not always 
able to be ascertained by inspecting the structure of the coordinate systems. For example, trajectories and 
point data have the same structure. 



 
The set of data types we propose to standardize in the convention are: 
 

• Collection of point data (unconnected x,y,z,t) Examples: earthquake data. 
• Collection of trajectories (connected x,y,z,t, ordered t) Examples: aircraft data, drifting buoy. 
• Collection of profiler data  (unconnected x,y,t, connected z) Examples: satellite profiles. 
• Station collection of point (unconnected x,y,z, connected t) Examples: metars. 
• Station collection of profilers (unconnected x,y; connected z, connected t) Examples: profilers. 

 
These mostly fit the form (Collection | Station Collection) of (Point | Profile | Trajectory). Others that might 
be needed: 
 

• Trajectories of sounding (connected x,y,z,t, ordered z, ordered t)  Examples: ship soundings. 
 

CDL Examples 
 
Collection of point data 
 
variables; 
  float lon(obs); 
  float lat(obs); 
  float z(obs); 
  double time(obs); 
 
  float humidity(obs); 
  float temperature(obs); 
  float pressure(obs); 
    pressure:coordinates = “lon lat z time”; 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Collection of point data”; 
  :CF_datatype = “point”; 
  :CF_table = “obs”; 
 
Collection of profiler data (rectangular) 
 
variables; 
  float lon(obs); 
  float lat(obs); 
  float z(obs, z); // or z(z) 
  double time(obs); 
 
  float humidity(obs, z); 
  float temperature(obs, z); 
  float pressure(obs, z); 
    pressure:coordinates = “lon lat z time”; 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Collection of profiler data”; 
  :CF_datatype = “profiler”; 
  :CF_table = “obs”; 
 
Collection of Trajectories 
 
variables; 
  float lon(obs); 
  float lat(obs); 
  float z(obs); 
  double time(obs); 
 



  float humidity(obs); 
  float temperature(obs); 
  float pressure(obs); 
    pressure:coordinates = “lon lat z time”; 
 
  int trajectory_id(obs); // unneeded if only one trajectory LOOK 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Collection of trajectory data”; 
  :CF_datatype = “trajectory”; 
  :CF_table = “obs”; 
 
 
Collection of Trajectories of Sounding (rectangular) 
 
variables; 
  float lon(sounding); 
  float lat(sounding); 
  double time(sounding); 
  float z(sounding, z); // or z(z) 
 
  float humidity(sounding, z); 
  float temperature(sounding, z); 
  float pressure(sounding, z); 
    pressure:coordinates = “lon lat z time”; 
 
  int trajectory_index(sounding); // unneeded if only one trajectory 
 
  char ship_name( trajectory, ship_name_strlen) ; 
  char instrument( trajectory, instrument_strlen) ; 
 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Collection of trajectory of sounding data”; 
  :CF_datatype = “trajectory of sounding”; 
  :CF_table = “JOIN sounding TO trajectory WITH trajectory_index”; 
 
 
Collection of Trajectories of Soundings (variable z) 
 
Variables: 
  float salinity(obs) ; 
  float temperature(obs) ; 
  float pressure(obs) ; 
  double time(obs) ; 
  int sounding_index(obs) ; 
 
  float lat(sounding) ; 
  float lon(sounding) ; 
  int trajectory_index(sounding) ; 
 
  char ship_name( trajectory, ship_name_strlen) ; 
  char instrument( trajectory, instrument_strlen) ; 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Collection of trajectory of sounding data”; 
  :CF_datatype = “trajectory of sounding”; 
  :CF_table = “JOIN sounding TO trajectory WITH trajectory_index AND JOIN obs TO sounding 
WITH sounding_index”; 
 
 
Station Collection of Point 
 
  float humidity(obs); 
  float temperature(obs); 
  float pressure(obs); 
 



  double time(obs); 
  double station_index(obs); 
 
  double lat(station); 
  double lon(station); 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Station Collection of point”; 
  :CF_datatype = “Station”; 
  :CF_table = “JOIN obs TO station WITH station_index”; 
 
Station Collection of Profilers (fixed length) 
 
  float humidity(profile, z); 
  float temperature(profile, z); 
  float pressure(profile, z); 
 
  double time(profile); 
  double station_index(profile); 
 
  double lat(station); 
  double lon(station); 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Station Profilers”; 
  :CF_datatype = “Station Collection of Profiler”; 
  :CF_table = “JOIN profile TO station WITH station_index”; 
 
Station Collection of Profilers (variable length) 
 
  float humidity(obs); 
  float temperature(obs); 
  float pressure(obs); 
  int profile_index(obs); 
 
  double time(profile); 
  double station_index(profile); 
 
  double lat(station); 
  double lon(station); 
 
attributes: 
  :Conventions = “CF-1.1”; 
  :CF_datatype = “Station Profilers”; 
  :CF_datatype = “Station Collection of Profiler”; 
  :CF_table = “JOIN profile TO station WITH station_index AND JOIN obs TO profile WITH 
profile_index”; 
 
 
 
 
Still To Do: 
 

• Decide on the mechanism by which the join is specified. Do we really want “pseudo-SQL” ? 
• Specify the datatypes globally or ?? 
• What do you put the :coordinate attribute on? All data variables would follow existing CF. Then 

you have a redundant system somewhat. 
• Sorting: when can you count on it being sorted? Eg time series in station data. Required or 

optional? 
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