Using the GOES-16 GLM

First and Foremost:

Find it here!

https://github.com/deeplycloudy/glmtools

The hard stuff first!

		GLM pixel grid: - Geostationary Projection (rads)				
				_		

		GLM pixel grid: Geostationary Projection (rads) -Pixel size varies!			

GLM pixel grid:	

			Now, ma	ake fixed < 2km	grid:	
	\parallel					
	H					
	\parallel					

			- ~2km :	grid: GLM grid 	values!
	\pm				

			Now, make fixed grid: - ~2km x 2km - NOW calculate GLM grid value: - oversampling for higher res.			

			Ц		 		
•)			
		Ŧ					
	+						
	+	۰					
		Т					
		Т	П				
	ш	н	ш				
	ш	н	ш				
	Н	╫	Н				
	ш	н	ш				
	ш	н	ш				
		Т	П				
	ш	н	ш				
	Н	╇	Н				
	Ш	П	П				
	Н-	╇	Н				
	П	П	П				
	4	╫	Н				

More here: https://github.com/deeplycloudy/glmtools/blob/master/docs/callgraph.rst

Event

A luminance threshold is achieved on a pixel

Event

A luminance threshold is achieved on a pixel

N		

Event

A luminance threshold is achieved on a pixel

Group

Group

Group

	•			
•	•			
	•			
		•		
			•	

Group

	•			
•	•			
	•			
		•		
			•	

Group

Flash

Flash

•	•		
	•		

Flash

Flash

•				
	•	•	•	•

Flash

Flash

		•

Flash

A spatiallyand temporally-coherent cluster of groups

Single Flash! ->

•	•			
	•	•	•	•
				•
				•

Flash

A spatiallyand temporally-coherent cluster of groups

Single Flash! ->

•	•	FI	ash Centro	pid
	•	•	•	•
				•
				•
			•	

Average Flash Area:

Average Flash Area:

Average Flash Area:

Average Flash Area:

= ??? km^2

Average Group Area:

Average size of all groups that hit a pixel

Average Group Area:

Average size of all groups that hit a pixel

Average Group Area:

Average size of all groups that hit a pixel

Average Group Area:

Average size of all groups that hit a pixel

= ??? km^2

Event Density:

Event Density:

Event Density:

Event Density:

Event Density:

Sum of all events that hit a pixel

= 3 events

Flash Centroid Density:

Sum of all radiance-weighted flash centroids that hit a pixel

Flash Centroid Density:

Sum of all radiance-weighted flash centroids that hit a pixel

Flash Centroid Density:

Sum of all radiance-weighted flash centroids that hit a pixel

Flash Centroid Density:

Sum of all radiance-weighted flash centroids that hit a pixel

= 2 flash centroids

Flash Extent Density:

Sum of all individual flashes that hit a pixel

Avg Flash Area = Total Area / Flash Extent Density

Flash Extent Density:

Sum of all individual flashes that hit a pixel

Avg Flash Area =
Total Area / Flash Extent Density

Flash Extent Density:

Sum of all individual flashes that hit a pixel

Avg Flash Area =
Total Area / Flash Extent Density

Flash Extent Density:

Sum of all individual flashes that hit a pixel

Avg Flash Area = Total Area / Flash Extent Density

= 2 flashes

Group Centroid Density

Sum of all radiance-weighted group centroids that hit a pixel

Group Centroid Density

Sum of all radiance-weighted group centroids that hit a pixel

Group Centroid Density

Sum of all radiance-weighted group centroids that hit a pixel

Group Centroid Density

Sum of all radiance-weighted group centroids that hit a pixel

= 2 group centroids

Group Extent Density

Group Extent Density

Group Extent Density

Group Extent Density

Group Extent Density

Sum of all individual groups that hit a pixel

= 3 groups

Total Energy

Total Energy

Total Energy

Total Energy

Total Energy

Sum of the radiances of all events that hit a pixel

= ??? Joules (~x10^-12)

The Full Picture

Data Hierarchy

Data Hierarchy

reduce dataset to the first two flashes group_parent_flash_id and event_parent_group_id are replications that are already included in the dataset

Note the contrast in convective cores
vs. stratified precipitation
large small

2018-01-04-05-27-00 UTC
ABI 30nd 14 (EV R.) GLM Average Floch Area term 24 Imac 3441.

30(5)-16 data are preliminary and non-ucceratural
Texas Tech University Atmospheric Science Group

Note the contrast in convective cores
vs. stratified precipitation
large small

2018-01-04-05-27-00 LUTC
ABI 3 and 14 ILV! (R.I. GLM Average Flosh Avec hum 24 limax 5441).
GOES-16-01-08 are preliminary and non-operatural
Texas Tech University Atmospheric Science Group

http://pogo.tosm.ttu.edu/data/GLM/noreaster 4Jan18/

2018-01-04 05:27 of UTC AB Send 14 (LW R), SLM Total Energy III, Imperior SDES-16-04% an profit minary and newboards and Texas Tech University Minaspheric Science Group

Live Data!

Let's take a look at some live data!

Gridded Data!

Let's take a look at some past gridded data!

My Workflow

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e20171202135000_c20171202135027.nc

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-**LCFA**_G16_s20171202134400_e20171202135000_c20171202135027.nc algorithm that processes events into flashes

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e20171202135000_c20171202135027.nc

start

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e**20171202135000**_c20171202135027.nc

end

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR GLM-L2-LCFA G16 s20171202134400 e20171202135000 c20171202135027.nc

created

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s**2017**1202134400_e20171202135000_c20171202135027.nc

year

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e20171202135000_c20171202135027.nc

Julien Day

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s2017120**21**34400_e20171202135000_c20171202135027.nc

hour (UTC)

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s201712021**34**400_e20171202135000_c20171202135027.nc

minute

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e20171202135000_c20171202135027.nc

second

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e20171202135000_c20171202135027.nc

tenth of second

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e20171202135000_c20171202135027.nc

Data began **2017 4/30 21:34:40z**

Data ended **2017 4/30 21:35:00z**

File created **2017 4/30 21:35:02.7z**

Raw data files:

- 20s data
- Contain "event", "group" and "flash" dimension

Naming:

OR_GLM-L2-LCFA_G16_s20171202134400_e20171202135000_c20171202135027.nc

Data began 2017 4/30

Data ended 2017 4/30 Yes, that's a lot of files a day

File created 2017 4/30

Gridding data

*activate glmval

Want a 500km by 500km box around Huntsville:

Gridding data

*activate glmval

Want a 500km by 500km box around Huntsville:

make_GLM_grids.py -o ~/grid_files -fixed_grid -split_events goes_position east -goes_sector conus -dx=2.0 -dy=2.0 --ctr_lat 34.7 -ctr_lon -86.6 --start=(time) --end=(time) OR*.nc

*netCDF files

What I get from this (.nc files):

- flash extent
- flash_init
- flashsize std
- footprint
- group_area
- group_extent
- group_init
- source
- specific_energy
- total_energy

Viewing Data / Making Lassos:

*activate glmval

Want a box around a specific storm for a certain length of time:

Viewing Data / Making Lassos:

*activate glmval

Want a box around a specific storm for a certain length of time:

jupyter notebook - GridLassoAnalysis.ipynb

- -log lasso
- -draw lasso
- -edit lasso .txt file

Viewing Data / Making Lassos:

Calculating Flash Stats

*activate glmval

Want to know stats of lightning in a given area / timeframe

Calculating Flash Stats

*activate glmval

Want to know stats of lightning in a given area / timeframe

glm_lma_param_space.sh

(Timeseries, etc.)

The Future

Collaborations!

Funding for Unidata cloud service:

- Put glmtools on Unidata jetstream cloud service with browse notebooks
- Run local processing at Tech on glm grids
- Distribute grids with LDM/Thredds
- Perform variety of data analysis

Make glmtools *simple* and available to the community!

The Future

Collaborations!

Funding for Unidata cloud service:

- Put glmtools on Unidata jetstream cloud service with browse notebooks
- Run local processing at Tech on glm grids
- Distribute grids with LDM/Thredds
- Perform variety of data analysis

Make glmtools *simple* and available to the community!

GOES-R HWT blog: http://goesrhwt.blogspot.com/