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Useful Information 
 https://github.com/ahaberlie/unidata-workshop-2018 

 Haberlie and Ashley (2018) 

 McGovern et al. (2017) – Great overview of current machine 
learning trends in Meteorology 

 Storm Identification and Feature Extraction 
◦ WDSS-II (Lakshmanan et al. 2007) 
◦ TITAN (Han et al. 2009) 
◦ THoR (Houston 2015) 
◦ Hagelslag (Gagne 2018) 

 Machine Learning and Forecasting: 
◦ MCS initiation (Ahijevych et al. 2016) 
◦ Damaging Straight-Line Wind Prediction (Lagerquist et al. 2017) 
◦ Heavy rain forecasting (Herman and Schumacher 2018) 
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Mesoscale Convective Systems 
Source: Walker Ashley 

Source:  NOAA Storm Prediction Center Source:Arturo Fernandez/Rockford Register Star via AP. 

Source: NOAA Storm Prediction Center 



Subjective Definition 

Parker and Johnson (2000) Gallus et al. (2008) 



Are These MCSs? 



What about these? 



Problem Description 
 How do you generate a climatology of mesoscale convective 
systems (MCSs) with a huge dataset of composite radar 
mosaics? 
◦ NOWrad (~2 km) 
◦ Over 95% of 15 minute periods from 1996-2017 
◦ ~106 images 
◦ Many well-known issues, but the analyses can be useful (Fabry et al. 2017) 

 Parker and Johnson (2000) objective definition: 
◦ Convective cells organized on a horizontal scale of at least 100 km 
◦ Must last for at least 3 hours 

 Computing Resources: 
◦ Ryzen 1700 (8 C, 16 T), nVidia GTX 1070, 32 gb RAM 



Why Machine Learning? 
 “Reducing time to science” 

 ~5.5 million “MCS Snapshots”  

 Automate classification of MCSs 
and four common false positives 
after segmentation 
◦ Tropical Systems 
◦ Synoptic Systems 
◦ Unorganized clusters 
◦ Ground Clutter / Noise / Etc. 



Related Work 
 Baldwin et al. 2005 
◦ Linear, cellular, stratiform 

 Gagne et al. 2009 
◦ Pulse, multicellular, MCSs 

 Lack and Fox 2012 
◦ Supercell, QLCS, rotating 

storms, pulse, etc. 

 Hobson et al. 2012 
◦ Supercell, pulse, 

multicellular, linear 

Visual Depiction Features 

Area: 9,000 sq. km 
Mean Intensity: 35 dBZ 
Eccentricity: 0.3 
… 
 

Area: 70,000 sq. km 
Mean Intensity: 31 dBZ 
Eccentricity: 0.8 
… 
 

User Label: 
Supercell 

User Label: 
Linear 



Sample Training Workflow 
1) Ask yourself a few questions: 

◦ What are the classes you want to identify? 
◦ What are distinguishing features of each class? 
◦ What data do you need to gather samples? 
◦ What algorithm should I use? 

2) Identify class examples 

3) Extract features 
◦ Area, Shape, Intensity, etc. 

4) Generate training and testing data 

5) Train machine learning model 
◦ Always test model performance on data not used to generate model 





Clutter Unorganized 

Tropical Synoptic 



Notebook Examples 
 Training Process 

 Extraction Process 

  

https://github.com/ahaberlie/unidata-workshop-2018/blob/master/workshop/notebooks/Testing_and_training_data.ipynb
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Machine Learning vs. Manual 
Manual MCS 

slice positions 
(2003-2013) 

Automated 
Approach 

(2015) 
0.95 threshold 
40-hr isopleth 

No 
threshold 
40-hr 
isopleth 

0.5 
threshold 
40-hr fill 



Quasi-linear convective systems 
 Quasi-linear convective systems 
(QLCSs) can produce severe 
weather (Trapp et al. 2005) 

 Convection-permitting models 
have trouble with QLCSs (Lawson 
and Gallus 2016) 

 Implications for people, weather 
forecasting, and high resolution 
climate simulations 



Visual differences 

QLCS 

Non- 
QLCS 



First Try 
 Select 3000 random high-
probability MCS “snapshots” 

 Label as QLCS or Non-QLCS based 
only on their visual features 
◦ Subjective 
◦ Looking for common visual traits 

 Use features to train tree-based 
ensemble 

◦~70% accuracy 

  



Second Try 
 Employ a convolutional 
neural network (Krizhevsky 
et al. 2012) 

 Inspiration / model 
configuration came from 
astronomy (Dieleman et al. 
2015) 

 Much harder to generate 
training / testing data for 
CNNs 

  



Training data approach 
What is visually important 
for classifying this as a 
QLCS? 
 
1) The entire structure? 
2) Stratiform features? 
3) Convection features? 

“I’m looking for an intense 
line with a strong reflectivity 
gradient.” 



Training / testing data creation 
 All images must be the same 
size 

 Find largest contiguous region 
of 50+ dBZ 

 Center a box on the intensity-
weighted centroid 

 Extract intensity information 
within box 

In Out 



Data Augmentation 
 Addressing overfitting 
◦ Only ~3000 samples 

 Keras ImageDataGenerator 
◦ Randomly apply slight 

modifications to images during 
training 

 Physically Reasonable? 
◦ Scale is important 
◦ Orientation might be important 

Fruit examples from : https://medium.com/ymedialabs-innovation/data-
augmentation-techniques-in-cnn-using-tensorflow-371ae43d5be9 

Original Rotation Zoom 



QLCS Sample Non-QLCS Sample 





Notebook Examples 
 QLCS Detection 

https://github.com/ahaberlie/unidata-workshop-2018/blob/master/workshop/notebooks/Find_QLCSs_With_CNN.ipynb
https://github.com/ahaberlie/unidata-workshop-2018/blob/master/workshop/notebooks/Find_QLCSs_With_CNN.ipynb


Application 

QLCS Occurrence 
June – August (2001-2013) 

Percent of MCS events that were QLCSs 
June – August (2001-2013) 
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Thank You 
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