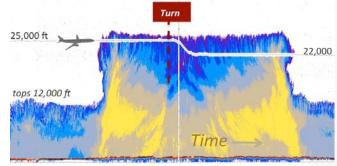


WRF Research @ U. Illinois

- Study focus: high impact weather
 - MCSs, severe thunderstorms and tornadoes
 - winter snowstorms hurricanes

- Resources
 - Teragrid > XSEDE (NCSA, SDSC, PSC, NICS, TACC)
 - all 'big iron' use, shifting sites; interest in cloud applications
- Collaborators UI Atmospheric Sciences
 - Robert Rauber
- Greg McFarquhar
- Professor and head
 Professor; Director-CIMMS

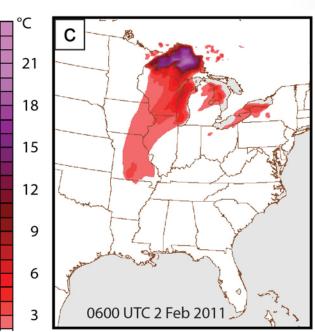
Perspectives



- All of our use has been on "big iron"
 - very successfully, but with issues along the way
- As an atmospheric scientist, am inquiring:
 - how can cloud computing help us w/our science goals?
 - can cloud computing reduce the "80-20" problems?
- As a XSEDE allocations committee member:
 - what mix of needs are best suited for the cloud?
 - can shift to cloud help with high load on traditional HPCs?

Applications

- Process studies, hypothesis testing
 - Altered physical processes
- High-resolution case studies
 - Trajectory analysis
 - Model vs. observations assessment
 - Place field data in context, e.g. along NCAR/NSF C-130 flight path


- Recent field programs
 - PECAN, Plains Elevated Convection at Night
 - **PLOWS**, ProfiLing Of Winter Storms
 - **SNOWIE**, Seeded & Natural Orographic WIntErtime clouds

Great Lakes blizzard

- Role of Great Lakes in snow fall depth & distribution
 - Case: 2011 Chicago Blizzard
 - Grid spacing: 3 km
 - Cores: 512, for 12h
 - I/O: coarse (3h)
 - Cloud applicability: mixed?
 - + multiple simulations
 - + extended prep, analysis
 - core count + wallclock

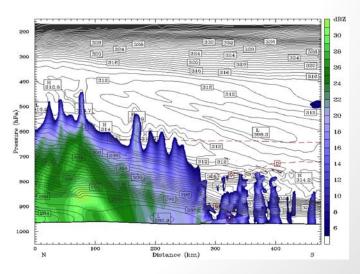
Temp. plume (Lake-none)

PLOWS IOP study

Gravity waves and banded precipitation

Case: 12-8-2009 (IOP-10)

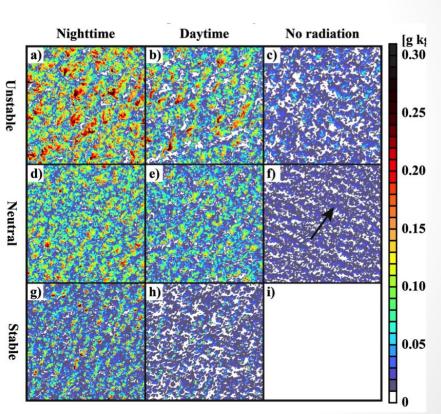
Domain: ~300x300x300


Grid spacing: 3 km x 100m

• Cores: 512, for 12h

• I/O: fine (1 min)

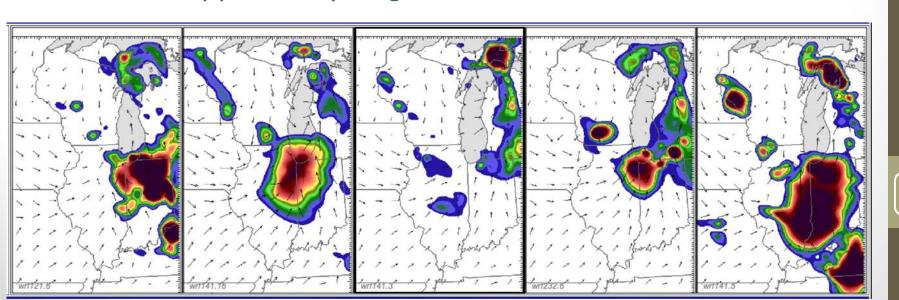
- Cloud applicability: mixed?
 - + multiple simulations
 - core count + wallclock



Snow production

Cloud-top generating cells

- Idealized simulations
- Parameter sweeps
- Varied stability, physics
- Domain: 501x501x199
- Grid spacing: 100 x 50*m*
- Cores: 128, for 24h
- I/O: fine (5 min)
- Cloud applicability: low?
 - core counts, wallclock
 - performance, reproducibility

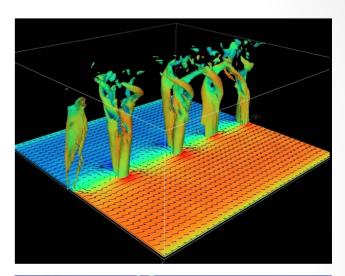


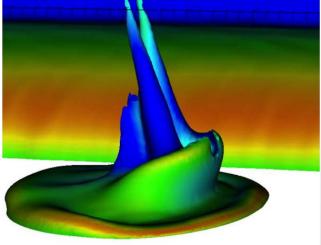
Nocturnal MCSs

Real-time simulations in support of field ops

- During field experiment; small ensembles
- Varied physics, initial / boundary data
- Domain: ~200x200x50
- Cores: 256, for 1-3 hr
- Cloud applicability: high

• I/O: modest (5 min)





Classroom HPC use

Numerical fluid dynamics

- Graduate class, Univ. Illinois
- Taught numerical methods and fluid modeling
- Exposure to HPC file systems, batch system, linux OS
- Ramping up of computing need as problems > 3D nonlinear code
- Used Stampede @ TACC
- Cloud applicability: high

Clear*est* use cases?

- For cloud computing -
 - class use for quick turnaround, small problem sizes
 - canned app configurations applied with minimal changes
 - closely-coupled workflows with well developed tools
 - esp. when computing is close to the data!
- Traditional roles for traditional "big iron"
 - large(r) core counts: 512 and more
 - problems requiring very large data storage
 - parameter sweeps which may be revisited later

Closing thoughts: a mix

Big iron

- Very high performance, mpi/hybrid, fast networks, parallel FS
- Reproduceability should be easy
 - Common hardware throughout each HPC
- Large rotating disk + mass store accompany the big iron
 - But: HPCs have limited lifetime (transition @ TACC: good!)

Cloud computing

- doesn't "go away"
- terrific opportunity to broaden acceptance, use, and tools
- potentially speed up time-to-solution esp. for newcomers
 - less time learning/doing, more time understanding

Research use of the cloud

- How will SUs be awarded? Are SUs cheaper for NSF?
- XSEDE flexibility at present (startups, extensions, etc)
 - Will we be able to or even need to shift allocations?