Cloud Archiving and Data Mining: Operational and Research Examples

John Horel*, Brian Blaylock, Chris Galli*

Department of Atmospheric Sciences
University of Utah

john.horel@utah.edu

*Synoptic Data Corporation

Amara's “law”: Overestimating the effects of a technology in the short run and underestimating the effects in the long run
MesoWest/SynopticLabs
https://synopticleabs.org/

- Objective: access, archive, and disseminate publicly-accessible provisional environmental data
- Transitioned over last several years from University of Utah to cloud-based IT infrastructure

~40 billion observations
Public Cloud Infrastructure

- **Cloud archiving:**
 - highly efficient mySQL/TokuDB databases

- **Data mining via API**
 - over a million requests to download over 10 billion data values per day

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
<th>Monthly Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Instances</td>
<td>29</td>
<td>$1800</td>
</tr>
<tr>
<td>Disk</td>
<td>3.5 TB</td>
<td>$350</td>
</tr>
<tr>
<td>Data Transfers</td>
<td>Egress</td>
<td>$350</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$2500</td>
</tr>
</tbody>
</table>

Number & Types of Server Instances

- **Acquire**
 - 13 Ingest, Processing, Load Balancing

- **Process**
 - 6 Database

- **Archive**
 - 2 Real-time data checking

- **QC**
 - 8 Web services/API/alerts

- **Disseminate**
Issues with Cloud Archiving/Data Mining

• Critical to manage costs and only use resources that are absolutely necessary
• Balancing data storage vs. data access costs is challenging
• Cheaper solutions exist to store large amounts of data, but may result in large latency to retrieve that data
• Compute nodes required for data mining need to be close to data archive to avoid data transfer costs
Cloud Archiving and Data Mining of Forecast Model Output: High Resolution Rapid Refresh (HRRR)

No retrospective archive of HRRR model output at this time at NCEI, NCEP, or ESRL accessible externally.

What we needed for WRF model initialization and HRRR model validation:

• Efficient and expandable archival storage for thousands of large GRIB2 files
• Fast retrieval of 2D fields within those files
• Ability to make data publicly accessible to other researchers

Solution: Object storage is an affordable, useable, and reliable long-term archive approach

See poster by Brian Blaylock & access archive via: http://hrrr.chpc.utah.edu/

Object Store Options

- Public cloud (Amazon Web Services, Microsoft Azure, etc.)
- Private cloud (University of Utah Data Center)

Our choice: Private Cloud @ University of Utah

- Disk-based S3-like object storage at the University of Utah’s Data Center managed by the Center for High Performance Computing (CHPC)
- Configured with 6+3 erasure coding: Objects are broken into 9 pieces—6 data pieces and 3 redundancy pieces
- No data loss, even if every disk fails on three servers
- New hardware and expanded storage can easily be added or replaced over time

<table>
<thead>
<tr>
<th>Cloud Storage Service</th>
<th>Cost over 5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHPC Pando</td>
<td>$120/TB</td>
</tr>
<tr>
<td>Amazon Glacier</td>
<td>$540/TB + $30/TB download</td>
</tr>
<tr>
<td>Microsoft Azure</td>
<td>$600/TB + $10/TB download</td>
</tr>
</tbody>
</table>
Model Data Flow

HRRR GRIB2 files
(from NOMADS/ESRL)

UU Private Cloud

3 Monitors

9 Object Storage DeviceServers
(each with 16 8TB drives)

UU local NFS

RADOS Gateway Node

External Users

Retrospective HRRR

User local NFS

External Users
HRRR Output Being Archived (~70 GB/day)

<table>
<thead>
<tr>
<th>Model Type</th>
<th>File Type</th>
<th>First Date Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational HRRR</td>
<td>2D fields</td>
<td>f00-f18</td>
</tr>
<tr>
<td></td>
<td>3D fields</td>
<td>f00</td>
</tr>
<tr>
<td></td>
<td>Subhourly fields</td>
<td>f00-f18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyses: April 18, 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forecasts: July 27, 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subhour: May 11 2017</td>
</tr>
<tr>
<td>Experimental HRRR</td>
<td>2D fields</td>
<td>f00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>December 1, 2016</td>
</tr>
<tr>
<td>Experimental HRRR Alaska</td>
<td>2D fields</td>
<td>f00-f36</td>
</tr>
<tr>
<td></td>
<td>3D fields</td>
<td>f00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>September 1, 2016</td>
</tr>
</tbody>
</table>
Data mining of HRRR output

- Users may download the entire field with `wget` or `curl` or download a single 2D surface if the byte range is known.

- Possible to use multi-thread python to simultaneously return thousands of grids in small amount of time.
Issues with Cloud Archiving/Data Mining

- S3-type objects must be downloaded to a local disk to process the data
 - Incur data download costs from public cloud provider
 - Red Hat now supports POSIX compliant Ceph File System to handle objects in cloud

- To avoid excessive data downloading, GRIB2 format allows selecting by byte range and returning only the fields within an object
 - Other file formats such as HDF5 may eventually allow subsetting of S3 objects by variable, region, single grid point, all vertical levels at a point, etc.
 - Siphon, NetCDF subsetting service

- NSF & other funding agencies require data management plans
 - While geoscience data repositories exist, they have strict standards
 - Academic institutions need to meet data stewardship requirements
 - Will institutions subsidize the costs to maintain large archives? “UU Hive” has 500 GB limit
Cloud Archiving and Data Mining: Operational and Research Examples

HRRR Archive

MesoWest/SynopticLabs
MesoWest/SynopticLabs
https://synopticleabs.org/

• Objective: access, archive, and disseminate publicly-accessible provisional environmental data rapidly

• Drivers:

Acquire ➔ Process ➔ Archive ➔ QC ➔ Disseminate