Active working group members:

James Biard (j.biard@computer.org)
Jonathan Yu (jonathan.yu@csiro.au)
Mark Hedley (mark.hedley@metoffice.gov.uk)
Adam Leadbetter (Adam.Leadbetter@Marine.ie)

Acknowledgements

Nick Car & Alex Ip (Geoscience Australia)
Kelsey Druken (NCI Australia)
Sean Arms (UCAR)
Contributors to bald repository
netCDF + Linked Data = netCDF-LD
Recommended best practice for exposing, sharing, and connecting pieces of data, information, and knowledge **on the web**.

Standard format ...

Reachable ...

Relationships between data ...

Collection of interrelated data → Linked Data

Key concept: Give each *thing* in the data an individual identity or URI

https://www.w3.org/standards/semanticweb/data
Linked Open Data Cloud http://lod-cloud.net/

32 billion triples in 2014
...
192 billion+ triples in 2017
See http://stats.lod2.eu/stats

Can we plug netCDF/HDF data in?
Other motivations

Encode and interpret nc files that use multiple metadata standards/conventions effectively (e.g. check naming and codelist conflicts) - CF often combined with other conventions (e.g. ACDD + CF)

Exploit Web and Linked Data tech to *enhance discovery* across large collections of files (e.g. represent separate files as graphs)

Represent nc/hdf files as close to the spirit of a binary array data model (vs. transform into other data models like RDF Data Cube (yet))

People are already linking to external references but not consistently …
Design principles

Work with current netCDF files

Design a simple mechanism to that works with existing netCDF files as-is to encode in a Linked Data friendly format.

Allow consistent and precise naming of each thing in netCDF/HDF metadata

Implies introducing new syntax (compatible with netCDF / HDF) to build URIs for each attribute name and property value

Enable consistent way to link to references, e.g. model, instrument, etc.
Overview

What have we been up to?

Tools

Syntax (aliasing, prefixes)

Supporting registries

Next steps
What have we been up to?

Events

- Mark and Jonathan talk
- EC workshop April '16
- AGU '16
- EC workshop Sept '17
- Jim joins
- WG kicks off
- Jonathan, Nick, Adam, and Ethan start talking
- eReefs project

2014 2015 2016

- netCDF-LD ISESS paper [1]
- Initial bald code library
- Initial syntax design

2017

- Online CF, ACDD registries
- nc2rdf
- nclldump
- Curating CDL examples
- Integration tests

Outputs

- Trusted hosting of relevant netCDF registries
- Data discovery, integration tools!

Tools

Python libraries (Github bald repo) - (bald = binary array linked data)
https://github.com/binary-array-ld/bald

Command line tools (in development):
nclddump
nc2rdf

Demos
nclddump

$ python nclddump.py example.cdl

CDL or netCDF/HDF file (reads metadata) → Hotlinked HTML styled ncdump output → Information on web pages and registries

Example on https://binary-array-ld.github.io/netcdf-ld/
nc2rdf

$ python nc2rdf.py example.cdl

CDL or netCDF/HDF file (reads metadata)

Load into triple store DB for semantic queries

(visualisation representation)
Demo visualisations of graphs from CDL examples in bald repo

ncld example 1 :: BALD Containers and Arrays

http://waterinformatics-ext1-cdc.it.csiro.au/ncld-demo/
ereefs convention example

variables:
 float eta(time, j, i) ;
 eta:units = "metre" ;
 eta:long_name = "Surface elevation" ;
 eta:standard_name = "sea_surface_height_above_sea_level" ;
 eta:medium_id = “ocean”
 eta:scaledQuantityKind_id = “sea_surface_elevation”
 eta:substanceOrTaxon_id = “ocean_near_surface”
ereefs convention example - what we wanted

variables:
float eta(time, j, i) ;
 eta:units = "metre" ;
 eta:long_name = "Surface elevation" ;
 eta:standard_name = "sea_surface_height_above_sea_level" ;
 eta:medium_id = “ocean”
 eta:scaledQuantityKind_id = “sea_surface_elevation”
 eta:substanceOrTaxon_id = “ocean_near_surface”

Who defines these terms?
How do I check validity?
ereefs convention example - what we ended up with

variables:

 float eta(time, j, i);
 eta:units = "metre";
 eta:long_name = "Surface elevation";
 eta:standard_name = "sea_surface_height_above_sea_level";
 eta:scaledQuantityKind_id =
 eta:substanceOrTaxon_id =

I can check validity over the web (HTTP)

Not very scalable or extensible :(Also not that readable…
Binary Array LD Syntax (for netCDF and HDF)

Methods to encode or process nc/hdf for translating to RDF / Linked Data ready

Aliasing

Lookup table for ‘well-known’ or declared mappings

Can be explicit or implicit

Pros: Easy to convert current nc files
Cons: Resolving clashes

- e.g. `title` \(\rightarrow\) `acdd:title`

Prefixing

Kinda like namespaces

Pros: Easy to convert conformant files
Cons: Current files need tweaking

- e.g. `acdd___title` \(\rightarrow\) `acdd:title`

(netcdf)
(RDF)
(netcdf)
(RDF)
Binary Array Linked Data (BALD) model

http://binary-array-ld.net/_latest?classView=true
Aliasing example

variables:

```c
int variable(pdim0, pdim1);
    variable: SDN_ParameterDiscoveryCode = "BactTaxaAbundSed" ;

int cfvariable(pdim0, pdim1);
    cfvariable: standard_name = "air_temperature" ;

// global attributes:
    :isAliasedBy = "alias_list" ;
```
variables:

```c
int alias_list;
    alias_list:BactTaxaAbundSed = "http://vocab.nerc.ac.uk/collection/P02/current/BAUC/" ;
    alias_list:standard_name = "https://def.scitools.org.uk/CFTerms/standard_name" ;
    alias_list:air_temperature = "http://vocab.nerc.ac.uk/collection/P07/current/CFSN0023/" ;
```

```c
int variable(pdim0, pdim1);
    variable:SDN_ParameterDiscoveryCode = "BactTaxaAbundSed" ;
```

```c
int cfvariable(pdim0, pdim1);
    cfvariable:standard_name = "air_temperature" ;
```

// global attributes:
```
:isAliasedBy = "alias_list" ;
```
Aliasing example – RDF representation

<example> a bald:Container ;
 bald:contains <variable>, <cfvariable> .
...

<variable> a bald:Array ;
 ns1:SDN_ParameterDiscoveryCode
 <http://vocab.nerc.ac.uk/collection/P02/current/BAUC/> ;

<cfvariable> a bald:Array ;
 ns2:standard_name
 <http://vocab.nerc.ac.uk/collection/P07/current/CFSN0023/> .
Prefix example – ereefs running example

variables:

float eta(time, j, i) ;
eta:units = "metre" ;
eta:long_name = "Surface elevation" ;
eta:standard_name = "sea_surface_height_above_sea_level" ;
eta:medium_id = "ocean"
eta:scaledQuantityKind_id = "sea_surface_elevation"
eta:substanceOrTaxon_id = "ocean_near_surface"
float eta(time, j, i) ;
 eta:units = "metre" ;
 eta:cf__long_name = "Surface elevation" ;
 eta:cf__standard_name = "cfsn__sea_surface_height_above_sea_level" ;
 eta:ereefs_medium_id = "feature__ocean"
 eta:ereefs_scaledQuantityKind_id = "property__sea_surface_elevation"
 eta:ereefs_substanceOrTaxon_id = "feature__ocean_near_surface"
Prefix example – added prefix mappings

variables:

 int prefix_list;
 prefix_list:cf__ = https://def.scitools.org.uk/CFTerms/
 prefix_list:cfsn__ = http://mmisw.org/ont/cf/parameter/

float eta(time, j, i) ;
 eta:units = "metre" ;
 eta:cf__long_name = "Surface elevation" ;
 eta:cf__standard_name = "cfsn__sea_surface_height_above_sea_level" ;
 eta:ereefs__medium_id = “feature__ocean”
 eta:ereefs__scaledQuantityKind_id = “property__sea_surface_elevation”
 eta:ereefs__substanceOrTaxon_id = “feature__ocean_near_surface”
Demo visualisations of graphs from CDL examples in bald repo

http://waterinformatics-ext1-cdc.it.csiro.au/ncld-demo/
Supporting registries

List all registers

<table>
<thead>
<tr>
<th>Name</th>
<th>Notation</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACDD</td>
<td>ACDD</td>
<td>Vocabulary of terms used in the Attribute Conventions Dataset...</td>
<td>experimental</td>
</tr>
<tr>
<td>CFTerms</td>
<td>CFTerms</td>
<td>Vocabulary of terms used in the CF conventions for netCDF files...</td>
<td>experimental</td>
</tr>
<tr>
<td>NetCDF</td>
<td>NetCDF</td>
<td>Vocabulary of terms used in the netCDF User Guide.</td>
<td>experimental</td>
</tr>
</tbody>
</table>

https://def.scitools.org.uk/
Next steps

Establishing trusted registers online - CF terms, NUG, ACDD

Process THREDDS servers and explore integration and visualisations

Explore opportunities to link to other codelists

- Area type http://vocab.nerc.ac.uk/collection/P30/current
- Standardised regions (P29) http://vocab.nerc.ac.uk/collection/P29/current/

Build tools and demonstrators showing discovery across existing netCDF CF repositories (e.g. via THREDDS)

Want to contribute? Submit nc samples to the bald repo
Thanks

Active working group members:
James Biard (j.biard@computer.org)
Jonathan Yu (jonathan.yu@csiro.au)
Mark Hedley (mark.hedley@metoffice.gov.uk)
Adam Leadbetter (Adam.Leadbetter@Marine.ie)

Python libraries (bald = binary array linked data)
https://github.com/binary-array-ld/bald
http://tinyurl.com/netcdf-ld

Demo http://waterinformatics-ext1-cdc.it.csiro.au/ncld-demo/
variables:
 int alias_list;
 alias_list:standard_name = "https://def.scitools.org.uk/CFTerms/standard_name";

float eta(time, j, i);
 eta:units = "metre";
 eta:long_name = "Surface elevation";
 eta:standard_name = "sea_surface_height_above_sea_level";
 eta:medium_id = "ocean"
 eta:scaledQuantityKind_id = "sea_surface_elevation"
 eta:substanceOrTaxon_id = "ocean_near_surface"