Lessons of the Northwest Earthcube

Cliff Mass University of Washington

Shaping the Development of EarthCube to Enable Advances in Data Assimilation and Ensemble Prediction

EarthCube NW

- During the past two decades, a group of us in the Northwest have tried to build a Northwest "EarthCube"
- A testbed system for scientific exploration, technology development, education and outreach, and public value.
- First, a brief description of this effort and then some thoughts on its implications for the current meeting.

UW EarthCube

- High resolution deterministic forecasts (WRF: 36, 12, 4, 1.3 km)
- UW Ensemble System (36-12 km)
- UW EnKF data assimilation and forecast system (36-12 km)
- Collection of all regional weather data in real time.
- Regional quality control and verification.
- Regional air quality, ocean circulation, hydrology, smoke dispersion models drive by WRF in real time.
- Weather apps (e.g., RainWatch, SnowWatch)
- Transmission of grids to major users in area
- Graphics evaluable to all users.
- Social media interpretation and discussion of model and observational data.

Pacific Northwest Environmental Forecasts and Observations

Supported by the Northwest Modeling Consortium

Regional Applications More Information

Air Quality

Fire Weather Airfire Bluesky

Updated: Thu May 12 17:20:02 PDT 2011

http://www.atmos.washington.edu/mm5rt/

36 km

12 km

4 km

40 1

1.33 km

45 N

WRF-GFS 4 km Domain Initialized 2012121800 UTC 4 pm PST Mon 17 Dec 2012

	Product	Loop By Type														Fo	oreca	ıst H	our		
ypes	Loop by Hour Now excludes soundings		<u>L</u> 0	<u>L</u> <u>3</u>	<u>L</u> 6	<u>L</u> 9	<u>L12</u>	<u>L15</u>	<u>L18</u>	<u>L21</u>	<u>L24</u>	<u>L27</u>	<u>L30</u>	<u>L33</u>	<u>L36</u>	<u>L39</u>	<u>L42</u>	<u>L45</u>	<u>L48</u>	<u>L51</u>	<u>L5</u>
	SLP, 10 m winds, and temp	LOOP	0	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	27	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	WA SLP, 10m winds, and temp	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	OR SLP, 10m winds, and temp	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	ID SLP, 10m winds, and temp	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	Western WA SLP, 10m winds, and temp	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	Columbia Gorge SLP, 10m winds, and temp	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	9	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	925 mb temperature, winds	LOOP	0	<u>3</u>	<u>6</u>	9	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	Temperature	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	WA Surface (2m) temperature	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	<u>27</u>	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	Columbia Gorge Surface (2m) temperature	LOOP	<u>0</u>	<u>3</u>	<u>6</u>	<u>9</u>	<u>12</u>	<u>15</u>	<u>18</u>	<u>21</u>	<u>24</u>	27	<u>30</u>	<u>33</u>	<u>36</u>	<u>39</u>	<u>42</u>	<u>45</u>	<u>48</u>	<u>51</u>	<u>54</u>
	Bias-corrected Surface (2m) temperature	LOOP	<u>6</u>	<u>12</u>	<u>18</u>	<u>24</u>	<u>30</u>	<u>36</u>	<u>42</u>	<u>48</u>	<u>54</u>	<u>60</u>	<u>66</u>	<u>72</u>							
	Surface (2m) temperature bias	LOOP	<u>6</u>	12	<u>18</u>	<u>24</u>	<u>30</u>	<u>36</u>	<u>42</u>	<u>48</u>	<u>54</u>	<u>60</u>	<u>66</u>	<u>72</u>							

WRF-GFS Page Navigation

Top 36 km 12 km 4 km 1 1/3 km WRF-GFS Runs for Other Dates UW Atm. Sci. Home Page

Links:

Instructions:

On the Fly Timeheights Generator

On the Fly Meteogram Generator

2. Select domain

model elevation.

displayed properly.

1. Select an initialization time

UW-Dept. of Atmospheric Sciences

model elevation above is from the

browser to IE9, Firefox 4, Chrome 10.0+, Safari 5.0+, or Opera 11.0+,

More Graphics

Display All Hours Soundings 12 4 1 1/3 Sounding Generator Meteograms 12 4 1 1/3 Meteogram Generator **Time-Heights** 12 4 1 1/3 **Time-Height** Generator Air Quality

12 4 1 1/3

On-The-Fly Graphics

WRF-GFS on the Fly Sounding Generator

Please direct questions/comments/errors to Mark Albright

Mark Albright - © 2011 University of Washington - Dept, of Atmospheric Sciences

NICA XHTMI NICA

Tens to Hundreds of Thousands of Hits Per Day on Web Site

NorthwestNet

Over 72 different networks

3000-4000 observations per hour over WA and OR

10 FEB 11 1800Z

Observations QC Summary Page University of Washington Dept. of Atmospheric Sciences

Current	Status	Stats	Maps	Experimental	Documentation	Logs	Contact
---------	--------	-------	------	--------------	---------------	------	---------

Flagged Data For All Networks 12-13-2012 16:00 PST through 12-17-2012 15:00 PST

Network	Total Observations	Total Observations Flagged	Percent Observations Flagged
Citizens Weather Observer Network	442743	16840	3.80
Weather Underground	352498	14964	4.24
Unknown	318678	6875	2.15
RAWS Networks (BLM + USFS)	286998	5201	1.81
Automated Surface Observation System (ASOS)	263522	2355	0.89
Oregon RWIS	21475	1735	8.07
BC MoT Weather Network	29959	1261	4.20
UVic School-Based Weather Station Network	49028	1159	2.36
WSDOT Road Weather Information System (RWIS) Network	33509	665	1.98
Automated Weather Source (AWS) Schoolnet	200169	553	0.27
GPS Meteorology	1078	339	31.4
Desert Research Institute	6560	217	3.30
California Air Resources Board	928	179	19.2
WSU Public Agricultural Weather (PAWS) Network	52516	136	0.25
Union Pacific Railroad	5233	133	2.54

Plots		Documentation	Observa	tions Quality Control	Histo	ory / Change Log	0	Contact
Verification Plots								
		E.		-j-)	\Box	71111	P
		Temperature	Dewpoint Temperature	Wind Speed	Wind Direction	Sea Level Pressure	6-hour Precipitation	Relative Humidity
	Time Series Plots	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	n/a
	Maps	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	n/a
MM5 vs WRF	Upper Air	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	n/a	n/a	00Z 12Z
Verification Plots	d1 Monthly Average Error Maps	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	n/a
	d2 Monthly Average Error Maps	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	00Z 12Z	n/a

Cyberstructure

Two Ensemble Systems

- 9 member 36-12 km ensemble forced by major global modeling systems
 - BMA post processing
 - Innovative displays (PROBCAST)
- 60 member EnkF system (Dart, WRF). 36-4 km Three-hour cycling, 24 h forecasts

The UW Mesoscale Ensemble Prediction System (UWME)

			Resolution (~@45°N)	Objective
	Abbreviation/Model/Source	Туре	Computational	Distributed	Analysis
NCEP	avn , Global Forecast System (GFS), National Centers for Environmental Prediction	Spectral	T254 / L64 ~55km	1.0° / L14 ~80km	SSI
*	cmcg , Global Environmental Multi-scale (GEM), Canadian Meteorological Centre	Spectral	T199 / L28 ~100km	1.25° / L11 ~100km	3D Var
NCEP	eta, Eta limited-area mesoscale model, National Centers for Environmental Prediction	Finite Diff.	12km / L45	90km / L37	SSI
	gasp , Global AnalysiS and Prediction model, Australian Bureau of Meteorology	Spectral	T239 / L29 ~60km	1.0° / L11 ~80km	3D Var
	jma , Global Spectral Model (GSM), Japan Meteorological Agency	Spectral	T106 / L21 ~135km	1.25° / L13 ~100km	OI
	ngps , Navy Operational Global Atmos. Pred. System, Fleet Numerical Meteorological & Oceanographic Cntr.	Spectral	T239 / L30 ~60km	1.0° / L14 ~80km	OI
A CONTRACTOR	tcwb , Global Forecast System, Taiwan Central Weather Bureau	Spectral	T79 / L18 ~180km	1.0° / L11 ~80km	OI
Met Office	ukmo , Unified Model, United Kingdom Meteorological Office	Finite Diff.	5/6°×5/9°/L30 ~60km	same / L12	3D Var

Precipitation

Bayesian Model Averaging (BMA) Summary

- The predictive PDF is a mixture of PDFs, each one centered on one of the forecasts after bias correction.
- Let y be the observed value.
- Let \tilde{y}_k be the *k*th forecast from the ensemble
- The BMA model is:

$$p(y|\tilde{y}_1,\ldots,\tilde{y}_K) = \sum_{k=1}^K w_k N(a_k + b_k \tilde{y}_k,\sigma^2)$$

. .

where
$$w_k \ge 0$$
 and $\sum_{k=1}^{K} w_k = 1$.

The model is estimated from a training set of recent data by maximum likelihood using the EM algorithm.

PROBCAST: www.probcast.com

University of Washington Probability Forecast

Click a number on the table to select a new weather map; click the weather map or fill in a zip code to select a new location for the table. The yellow box shows the current map; the star shows the current location.

High temperature for Fri Daytime, Sep 1 2006 -- Select a new weather map --

Learn more about this page.

This website provides uncertainty information along with a probabilistic weather forecast; move the mouse over a feature to learn more about its function.

This website was developed at the UW Applied Physics Laboratory, on the basis of research conducted at the UW departments of Atmospheric Science, Statistics and Psychology. It is funded by the Office of Naval Research.

Copyright © 2005 University of Washington. All rights reserved. Disclaimer

Contact ptewson@

-

apl.washington.edu with questions, comments, and reports of errors.

Snap to nearest zip code on map click (Improves speed)

Select exact click location (slower)

An Aside

- Probcast is very popular in lay communityNo obvious place to get support to continue this work (was supported by DOD MURI).
- No real grant program to bring probabilistic prediction to the public and other users.
- But decision making agencies still wary of probabilistic predictions.

UW Psychologist Susan Joslyn has been working on the problem of communication

25%	
	Instructions: The picture to the left displays the rain forecast for the Seattle Tacoma Airport. Please use it to answer the following questions.
Likely Amount: 0.0"	
1. How likely is rain toda	ay?
Please record your answer by	y drawing a vertical line () in the scale below)
Unlikely	Likely
,	
2. Would you take an un YesNo	nbrella with you (or wear a hooded jacket) today? (glease check one answer
 Would you take an un Yes No How much will it like 	nbrella with you (or wear a hooded jacket) today? (please check one answer)
 Would you take an un YesNo How much will it like No Measurable Rain Nore than half an inc 	hbrella with you (or wear a hooded jacket) today? (please check one answer) Less than half an inch Can't tell from this forecast
2. Would you take an unYesNo 3. How much will it likeNo Measurable RainMore than half an inc	hbrella with you (or wear a hooded jacket) today? (please check one answer) Less than half an inch chCan't tell from this forecast
 Would you take an un Yes No How much will it like No Measurable Rain More than half an ind Over approximately w None of the Area 	hbrella with you (or wear a hooded jacket) today? (please check one answer) Less than half an inch chCan't tell from this forecast /hat area of Puget Sound will it likely rain today? (please check one answer) Less than half of the area
 Would you take an un YesNo How much will it like No Measurable Rain More than half an inc Over approximately w None of the Area More than half of the 	hbrella with you (or wear a hooded jacket) today? (please check one answer) Less than half an inch chCan't tell from this forecast /hat area of Puget Sound will it likely rain today? (please check one answer) Less than half of the area e areaCan't tell from this forecast
 Would you take an un YesNo How much will it like No Measurable Rain More than half an ind Over approximately w None of the Area More than half of the How much of the time 	hbrella with you (or wear a hooded jacket) today? (please check one answer) Less than half an inch chCan't tell from this forecast /hat area of Puget Sound will it likely rain today? (please check one answer) Less than half of the area areaCan't tell from this forecast will it likely rain today? (please check one answer)

The Winner

Chance of Precip

Regional Data Assimilation and Forecasting

Please direct web questions and comments to: David Ovens

4 km analyses

niversity of Washington Dept. of Atmospheric Sc

120° W

Gridded Output Is Provided to Regional Users

- Regional NWS Offices
- Private Sector firms
- To drive real time, air quality, ocean models, hydrological, wildfire, and other models.

King-5 TV Futurecasts Driven by UW WRF

WSU Air Quality Modeling

WASHINGTON STATE **UNIVERSITY**

World Class. Face to Face.

AIRPACT Home Graphics Products

LAR Home

Intro to AIRPACT Domain Collaborators Background Change Log News Disclaimer

Activities/Related Programs:

Contact

NW-AIROUEST AIRNow BioEarth BlueSky CEREO ClearSky WRF Forecasting NSPIRE WSU Laboratory for Atmospheric Research

Air-quality forecasting for the Pacific Northwest AIRPACT

Today's PM2.5 Modeling Prediction

(click here for today's OZONE modeling prediction)

AQI-colored Rolling 24-hr Avg PM2.5 from two AIRPACT-3 CMAQ runs:

2012041600 and 2012041700

350.40 95 280.45 210.45 140.45 55.45 35.45 15.45 10.00 0.00 16 ug/m3 95 -1 April 19,2012 2:00:00 (PST)

Min= 0.19 at (14,70), Max= 21.85 at (60,33)

Daily MODIS imagery

Managing Field Burning

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

> ClearSKY Home Visitor's Area LAR Home

Function Technical Description Timing Disclaimer Project Contacts User-Prescribed Burn Scenarios (pwd protected)

Activities/Related Programs:

NW-AIRQUEST AIRPACT BlueSky El Web Center WRF Forecasting WSU Laboratory for Atmospheric Research A dispersion forecasting system supported by NW-AIRQUEST ClearSKY

ClearSky dispersion forecasting system for management of agricultural field burning smoke in the Pacific Northwest.

Burn Locations:

Burn Scenarios:

Default user-prescribed burn scenarios

(password protected)

- Eastern Washington
- Northern Idaho
- Clearwater & Nez Perce Reservation
- Boundary County

U.S. Forest Service

WSDOT

Ventilation Index for AQ Agencies

WeatherApps

Social Media Outreach: the Blog

Big Storm: But the Worst South of Seattle

The most powerful storm of the season will hit the Northwest tonight and tomorrow AM, but the strongest winds will be over southwestern Washington and northeast Oregon.

Each run of our computer models have been moving the low southward, and particularly the areas of big pressure gradients, which are associated with high winds. Let me show you a sequence of pressure forecasts from the UW WRF model for 10 PM tonight, 1 AM tonight, and 4 AM tomorrow morning. At 10 PM a 973 hPa low is offshore our coast, but the area of very large pressure gradient (change) is offshore and swings towards the Oregon coast. Expect big winds (gusts above 50 mph) along the Oregon coast at this time.

Daily Hit Rate: cliffmass.blogspot.com

Ensemble General Comments

- Filling the 4D datacube (or EarthCube?) is only half the problem.
 - Getting users to take advantage of probabilistic information effectively is the harder problem.
- Ensembles are not the only way to get probabilistic information (e.g., analog/reforecasting, MOS)
- Post-processing is a huge part of the problem.

DataCube Directions

- We have a choice between two options:
 - DataCube Interactive
 - DataCube Grande

DataCube Interactive

- Better software for viewing, manipulating, and exploring model output and data.
- More convenient archival of ensemble output
- Improved data formats, metadata, and data structures.
- Weather and climatological data access still has problems. Example: ask a question: when is the windiest time of the year in Denver. How would you get the answer?
- If DataCube Interactive is the priority, we need a meeting focused on it. Including demonstrations of real world analysis/problem solving. Cultural change is needed.

DataCube Interactive

• If you create it, they might not use it. Or use it effectively.

- Dealing with serious and long-standing issues that are slowing or undermining the community's ability to:
 - Produce high quality probabilistic analyses and forecasts.
 - Effectively and efficiently make scientific progress.

- Probabilistic Prediction Initiative
 - Bring the community together to work effectively as a team to foster rapid development of ensemble-based probabilistic prediction and to more progress on attendant scientific issues.
 - Includes a testbed facility and staff to serve as testing and scoreboard center
 - Organizing committee to oversee and prioritize efforts
 - Funding will support some Pis working directly on initiative goals.

- Creating a rationally designed observing system.
 - OSEs and OSSEs, plus adjoint/ensemble sensitivity approaches
 - How do we create an effective observing system for the least possible cost?
 - Organizing committee and grant funding to keep folks on track and directed.

 Once started, there would be a good chance to secure funding from other (non-NSF sources).

The END