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Cloud-resolving Regional Ensemble Analysis/Prediction

PSU WRF-EnKF Realtime Performance for Sandy

60-member 3-km cloud-resolving ensemble analysis forecast from 00Z Oct 26
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Lessons Learned from HFIP Experience

Hurricane forecast can be greatly improved through cloud resolving
ensemble analysis and prediction with assimilation of high-resolution

inner-core observations

Future of hurricane prediction: enhanced inner-core observations,
advanced data assimilation, improved forecast models, better

computing resources for cloud-resolving ensemble




Practical Predictability vs. Intrinsic Predictability

(Lorenz 1996; Zhang et al. 2006; Melhauser and Zhang 2012)

Practical predictability: the ability and uncertainty to predict given
practical initial condition uncertainties and/or model errors, both of
which remain significantly big in the present-day forecast systems.

Intrinsic predictability: the limit to predict given nearly perfect initial
conditions and nearly perfect forecast systems, in other words
when the initial condition and model errors become infinitesimally
small.

Implication: setting up expectations and priorities for advancing
deterministic mesoscale forecasting (through better model,
observing network and/or data assimilation); guidance on the
design of mesoscale ensemble prediction systems (through

understanding of the mesoscale error growth mechanisms)




Multi-Scale Predictability Foreseen by Lorenz (1969) ‘
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“An error in observing a thunderstorm, after doubling perhaps every
fifteen minutes until it becomes large, may subsequently lead to an
error in a larger scale of motion, which may then proceed to double
every five days. If this is the case, cutting the original error in half
would increase the range of predictability of the larger scale not by
five days but by only fifteen minutes.”



Mesoscale Predictability of a Winter Snowstorm

MSLP and reflectivity for w/ and w/o small random white noise in initial temperrature

Zhang, Snyder and Rotunno (2002MWR; 2003 JAS)



Predictability of 10 Jun 2003 Bow Echo event during BAMEX ‘

18h fcst from 3.3-km WRF ensemble simulations with EnKF perturbations
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Intrinsic limit? |

‘ Predictability of 10 Jun 2003 Bow Echo event
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Forecast divergence with 1/8 of normal IC error
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PRACTICAL vs. INTRINSIC PREDICTABILITY

« Where the members lie in
relation to the truth and
within which flow regime

determines the evolution L E
of that member S 3 GOOD REGIME @y
« If truth lies almost entirely gg rooR reainE @
in a flow regime &
— reducing the initial
perturbations will hone in on
the truth
— increase the practical
predictability of the event
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(Melhauser and Zhang 2012 JAS)



Why Ensemble Forecasts?—An Imperfect World

Uncertainties in initial conditions due to data, background and DA
Uncertainties in forecast models due to physics, resolution, numerics

Intrinsic limit of predictability of weather/climate at different scales

How to Create An Ensemble?

Multi-analysis Ics/BCs, multi-model, multi-physics, stochastic physics
singular vectors, breeding, ensemble data assimilation (e.g., EnKF), ...

Key issues: Model vs. IC diversity, size vs. resolution, existing regional
scale ensemble are mostly ad hoc in nature, predictability limits in
terms of probabilistic versus deterministic, practical vs. intrinsic




Impacts of Different Observing Platforms on Global

Medium-Range Weather Forecasts at ECMWF

AMSU-A: Adv MW Sounder A on Aqua and NOAA POES (T)
IASI: IR Atmos Interferometer on METOP (T,H)

AIRS: Atmos IR Sounder on Aqua (T,H)

AIREP: Aircraft T, H, and winds

GPSRO: RO bending angles from COSMIC, METOP

TEMP: Radiosonde T, H, and winds

QuikSCAT: sfc winds over oceans

SYNOP: Sfc P over land and oceans,H, and winds over oceans
AMSU-B: Adv MW Sounder B on NOAA POES

GOES winds

METEOSAT winds

Ocean buoys (Sfc P, H and winds)

PILOT: Pilot balloons and wind profilers (winds)

HIRS: High-Resol IR Sounder on NOAA POES (T,H)

MSG: METEOSAT 2nd Generation IR rad (T,H)

MHS: MW humidity sounder on NOAA POES and METOP (H)
AMSRE: MW imager radiances (clouds and precip)

SSMI: Special Sensor MW Imager (H and sfc winds)

GMS: Japanese geostationary satellite winds

MODIS: Moderate Resolution Imaging Spectroradiometer (winds)
GOES IR rad (T,H)

MTSATIMG: Japanese geostationary sat vis and IR imagery
METEOSAT IR Rad (T,H)

03: Ozone from satellites

Caveats: observation impacts are function of model; regional scale impacts unknown
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Issues in Satellite/radar Data for Regional Models

How important is satellite data for regional scales? Mostly not used yet

Satellite data coverage is irregular in time and space; existing quality
control and bias correction procedures are developed for global models

Usually the regional scale model top is too low for making full use of
radiance observations

Arguably the cloudy radiance (and radar reflectivity) is critical for
mesoscale severe weather but the assimilation of cloudy radiance (and
dBz) is still far from mature, even in global models

Data archive, quality control and bias correction, observation operator
for satellite (and radar) observations are usually not readily accessible
to individual university PIs

How can we do better under the auspice of BigData or EarthCube?




Comparison and coupling: DA Configurations over June 2003
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- 3D/4D-Var of WRFDA V3.1 (Barker et al. 2004; Huang et al. 2009)
“NMC” background error covariance (B); Var-scale at 3.0 and Length-scale at 1.0
6-h assimilation window (covering -3 to +3 h at every analysis time)

- EADVAR: coupling EnKF with 4D-Var (zhang et al. 2009)
Perturbations are updated by EnKF, while mean is updated by 4D-Var
Ensemble-based B is introduced into cost function via Alpha-control transform
( Lorenc 2003; Wang et al. 2007, 2008a, b)
ensemble-B is localized with the influence radius of 1800-km
ensemble-B and NMC-B are weightedat p_1lp a _1) B . (B=125)
0.8 and 0.2, respectively p ens nmc



Strength and weakness of different DA methods

* 3DVar: Low computational cost, fit to observations
Lack of flow-dependent background uncertainty (B)

* 4DVar: Trajectory fitting for asynchronous observations
Poor background error covariance
(but with some implicit flow dependence)
High computational cost and high code maintenance

* EnKF: Flow-dependent B; synergy with ensemble forecast
Moderate computational cost and low code maintenance
Highly depends on the quality of
ensembles and first-guess

* Hybrid: coupling EnKF with 3D/4DVar



Comparison of 3DVar, 4DVar, EnKF, E3DVar & E4DVar
Mean vertical profiles of month-averaged 12-h forecast RMSE
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( Zhang et al. 2011, 2012 MWR; Zhang and Zhang 2012 MWR)



Comparison of 3DVar, 4DVar, EnKF, E3DVar & E4DVar
0-72hr U, V, T & Q RMS forecast error over CONUS Jun 2003 (60 runs)
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( Zhang et al. 2011, 2012 MWR; Zhang and Zhang 2012 MWR)



Mesoscale EnKF: Key Issues and Challenges

* Model error
* Covariance inflation or additive noise, going adaptive
* Multi-physics ensemble; parameter perturbation within one parameterization?

* Shall we go for multi-model ensemble? Incompatible state elements
* Sampling error

* Covariance localization: wide open in terms of optimality, balance issues

* Localization for multiscales: Adaptive localization, Successive localization

* Hybrid with VAR: are there real advantages?

* Useful in model error treatment; sampling error, non local obs localization,
balance, time-integrated observations, ...

 Computational considerations

« ensemble size, resolution, parallelization; do we need and can we afford adjoint?




Model Error --- bottleneck for all NWP issues

Resolved vs. subgrid-scale: synergy between parameterizations,
partially resolved physics, column-based only, ...

Parametric versus stochastic physic uncertainty: can parameter
estimation lead to better physics parameterizations?

Multi-model/multiphysics: how many models we need/afford?
How much diversity of physics parameterizations is too much?

Stochastic schemes in global models: Stochastically-perturbed

physics tendencies, energy backscattering, vorticity confinement,
stochastically-perturbed boundary-layer humidity, ...

Can we represent physics diversity and model error with
parametric + stochastic errors within a single model/physics?




Model Error in EnKF: Multi-physics imperfect-model OSSE

Single-scheme: KF used for the ensemble
Multi-scheme: KF2, KF, BM, and KUO used for the ensemble
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Multi-scheme has smaller analysis error than that of single scheme
(Meng and Zhang 2007 MWR)



Model Error in EnKF: Why multi-scheme is better?
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EnKF with real obs: Month-long Multi- vs. Single-scheme
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Multi-scheme works consistently better than single scheme esp. in T and q

(Meng and Zhang 2008a,b MWR)



WRF sensitivity to PBL schemes

Episode & Resolution

= Period: July — Sept., 2005 (TexAQSll|)
= Resolution: 108km, 36km, 12km, 4km
" Grids: 53x43, 97x76, 145x100, 166x184 ™

40°N -

50°N =

Model Configurations

= YSU, ACM2, MYJ PBL schemes

=  WSM 6-class graupel scheme

= NOAH land-surface model (LSM)

=  Dudhia short wave radiation
= RRTM long wave radiation I

= Grell-Devenyi ensemble cumulus R0°W  MOW 100°W  90°W 80w
scheme Domains and TCEQ, NWS/FAA sites

35°N

30°N -

25°N -

20°N -

(Hu et al. 2010a JAMC)



Physics Uncertainty: sensitivity to p in ACMZ2 PBL

Lower p => stronger vertical mixing K ( ) k (1 - "/h)
=> higher PBL height ¢
Mean profile at 211 NWS/FAA sites 1300 CST Mean profile at 211 NWS/FAA sites 1300 CST
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(Nielsen-Gammon et al. 2010 MWR; Hu et al. 2010a JAMC, 2010b GRL)




Model error treatment through simultaneous state
and parameter estimation (SSPE) of p with EnKF

! ! ! ! ! !
8/30/00 8/30/12 8/31/00 8/31/12  9/1/00 9/1/12 9/2/00

CST, month/day/hr

During most of time, SSPE predicts p value lower than 2.0 (default).

(Hu et al. 2010b GRL)



WRF forecast bias and error of T2 w/ and w/o SSPE

Bias and RMSE of T2, °C
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(Hu et al. 2010b GRL)



Science Challenges in Regional DA and EF

Observations: RAOBS, SFCOBS, Mesonets, Radar, Satellite, GPS RO
* Data archive/access, quality control/bias correction, obs operator
Forecast models: WRF-ARW, WRF-NMM, COAMPS, ARPS, MPAS
* Physics uncertainty, stochastic/parametric error, resolution, BCs
DA methods: 3DVAR, 4DVAR, EnKF, hybrids, (nudging, global DA)
 Ensemble/adjoint, Static/ensemble B, model error, learning curve
EF methods: multi-analysis ICs, multi-model/physics, EnKF, breeding

 Model vs. IC diversity, size vs. resolution, most ad hoc in nature

Predictability: global vs. regional vs. storm-scale, deterministic vs.
probabilistic, practical vs. intrinsic limits, ...




Community-shared Regional DA and EF
Some initial thoughts on science needs

Data hub (Unidata?) for quality controlled observations, selected model
output, shared data mining, verification and visualization

Shared forecast domain (CONUS?) and performance metrics (QPF?)

Baseline or reference modeling system: well-configured forecast model
(WREF?) with well-tuned DA schemes (WRFVAR or DART or GFS)

Advanced theme-based research foci, instead of simple multiplication
Observations: obs operator, quality control, bias correction, ...

Model physics: microphysics, PBL, LSM, radiation, ...

DA methods: 3DVAR, 4DVAR, EnKF, hybrids, ...

EF methods: model vs. IC diversity, size vs. resolution, multi-
model/physics/analyis, stochastic physics, EnKF, breeding, SVs, ...




