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lebaldi and Knutti (2007) group into four major sources:
(@ initial condition
» Fuqing Zhang, Jun Du

@ boundary forcing
» surface/external conditions are prescribed over time

@ parameterization parameter
» schemes contain parameters that are uncertain from

observations or physical principles — PPE

@ model structure
» spread caused by choices in model formulation design

_ MME,
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MM Superensemble Improves Climate Forecast
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Fig. 1. Asian monsoon domain average rms error for the superensemble (heavy line) and the
selected AMIP models (thin lines) for 850-hPa meridional wind (A) and precipitation (B). Units in

(A) are ms~ ' and units in (B) are mm day .
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FIG. 6. The rms error of the 850-hPa winds on day 3 of the forecasts during Aug 1998. The results for the multimodels follow from left
to right, and the results for the ensemble mean and the superensemble are shown in the far right, respectively, (m s~').
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FIG. 8. The vertical bars shows RMS error (along ordinate) for
single-model ensemble mean as compared to the overall ensemble
mean (clear bar) and superensemble (dark bar) shown in at far
right for each year . Also shown in the far right side is the overall
average for 15 yr. These results pertain to the larger monsoon
domain. The least RMS error are seen for the superensemble in the
far right of each sets of bar.

Optimized weights varying in space and
depending on individual member
models’ performance

Adopted from Krishnamurti (1999, 2000, 2011)



MME Improves Weather & Climate Forecast
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Fic. 2. Time series of the ensemble-mean precipitation anomaly cor-
relation coefficients for the multimodel (thick red bars) and all indi-
vidual models (thin bars; ECMWEF: blue, Met Office: green, Météo-
France: orange, MPI: cyan, LODYC: pink, INGV: yellow, CERFACS:
gray). (a) One-month lead summer (JJA) precipitation in the Tropics
(latitudinal band of 30°S-30°N); (b) I-month lead winter (DJF) pre-
cipitation in the northern extratropics (latitudinal band of 30°-87.5°N).
Additionally, the average over the whole period 1980-2001 is shown
at the end of each plot.
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FiG. 5. (a) Brier skill score and (b) reliability component of Brier score for the
I-month lead tropical summer (JJA) precipitation 1987-99 for the single
ECMWEF control model (blue) and the DEMETER multimodel (red). The event
s “precipitation anomalies above zero.” Results are shown for different en-
semble sizes from 9 to 54 members. Note that lower values of the reliability

““ensemble of
opportunity
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Questions

If MME outperforms always?
If optimal weighting is better?
If fidelity constraint is better?

If ensemble of op is adequate?



Uncertainty — PPE

Parametric

desion for

JOJJ® "S'W'J [BUOISUSWIP-UON

~
25 &
Eg s
,ea
T ES
sE3

IR =
S = E ~ 2
£ P
NanVRN-H aM S N—
S = w0 = S
e v o S 3
© i n-l e
S 2 =% O =
2 = =& 2 3

Vo= = rOJ
= = © 8 =
- ~ .
5.5c & 8

~

a8 2E = &
______________ T TT T TT
I-_—u -
- - -
L —_—  Mm u
L i
- -.ﬁ—l. -
- — 7
L s 1] i
L —r— T
L _— m A4
L ———7
L —r T -
L — T
- EI. -
- -_HD.. -
L —T[TH A
L —TH A
- E.. -
- -IDI.I
- —H—-.l
- -' -
- —=|
- _IE.I
- Tgl
- _.gl
- TEI
- E_I
- TDUI
- T-I
- -I
- -.EI
- -=|
- -.ul
L —D |
________________________
To) o Te] o To) o
Al Al ~— ~—

— Unweighted PDF 1
— Weighted PDF

00!

2 8 4
[a\] — —

(00) °1

o

—

10

Climate sensitivity (°C)



Annual Global Mean Temp. (K)

Fraction of ensemble

Structural Uncertainty - MME
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| || member in both the CAM and HAD (climateprediction.net)
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05t II sensitivity created from the CAM and HAD ensembles using
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0 5 10 the HAD ensemble are shown.
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Adopted from Sanderson (2011).
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Increasing predictive skill

Quantifying uncertainty




CWRF Improves Seasonal Climate Prediction

a) Frequency of RMSE b) Difference (CWRF minus CFS) of Equitable Threat Score (ETS)
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a) Spatial frequency distributions of root mean square errors (RMSE, mm/day) predicted by the CFS and
downscaled by the CWRF and b) CWRF minus CFS differences in the equitable threat score (E7S) for seasonal
mean precipitation interannual variations. The statistics are based on all land grids over the entire inner domain
for DJF, JFM, FMA, and DJFMA from the 5 realizations during 1982-2008. From Yuan and Liang 2011 (GRL).
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Frequency distribution of TOA radiative flux and CRF averaged over
[60°S, 60°N] in January 2004 from the CAR ensemble of 960 members
Adopted from Liang and Zhang (2012)
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Forecast Accuracy (%)
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Optimizéd Physics Ensemble
Prediction of Precipitation

In summer 1993

The physics ensemble mean
substantially increases the
skill score over individual

configurations, and there
exists a large room to
further enhance that skill

through intelligent
optimization.

Spatial frequency distributions of correlations
(top) and rms errors (bottom) between CWRF
and observed daily mean rainfall variations in
summer 1993. Each line depicts a specific
configuration in group of the five key
physical processes (color). The ensemble
result (ENS) is the average of all runs with
equal (Ave) or optimal (OPT) weights, shown
as black solid or dashed line.



Optimized Physics-Ensemble Prediction
KF Climate Mean (mm/day)

40N 40N

30N | 30N

40N | 0 | 40N K

30N | 30N [




Optimal Weight Distribution Exhibits Large-Scale Features
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AS:

Quasi-Equilibrium
[Arakawa-Schubert]

W: MC:
Vertical Velocity CWRF Moisture Convergence
[Brown & Frank-Cohen] (Krishnamurti)

ECP
Closures

KF: TD:

Cloud Work Function Cloud Work Function
Present [Kain-Fritsch] — Tendency



Dynamic-Statistical Optimization of
Mesoscale Model Representation of

Precipitation




Regional OPE Prediction

/NOAA CFS h

NASA GMAO

B

Planetary forcint

ICM=CAM

CMs

Climate Impact
Extreme
Hydrology
Air quality
Water quality
S/W energy
Crop growth
Ecosystem




