Weather in a Tank: Exploiting laboratory experiments in the teaching of meteorology, oceanography, and climate

Brian Tang John Marshall Lodovica Illari

Teaching rotating fluid dynamics to a broad audience

Creating a learning environment where students are encouraged to learn through investigation and inquiry

A combination of approaches is needed

THE CHALLENGE

Propose using simple laboratory tank experiments as a key part of the education of students

METHODOLOGY: EQUIPMENT

PROJECTS

PROJECTS

PROJECTS

Potent Potables

METHODOLOGY: IMPLEMENTATION

INSTRUCTOR	STUDENTS
Describe premise of experiment	
	Make prediction of experiment
Demo experiment	
Highlight relevant theory	
	Perform experiment
	Analyze real world observations
	Reports and presentations
Connect the dots	

- 1. Describe premise of experiment
 - What is the polar front?
 - What is the cause of the jet stream?

2. Make prediction of experiment

What they think they will observe in the rotating frame of reference for combinations of Ω and $\Delta \rho$.

No rotation is fairly intuitive. Once rotation enters the mix, get some interesting responses.

3. Demo experiment

Dome of salty water. Cyclonic motion at surface.

4. Highlight relevant theory

• Margules' Equation

$$v_2 - v_1 = g \frac{\rho_2 - \rho_1}{\rho_2} \frac{\tan \gamma}{f}$$

• Thermal Wind Equation

$$\frac{\partial \vec{u}_g}{\partial z} = -\frac{R}{fp}\,\hat{z} \times \nabla T$$

5. Perform experiment

Collect data to validate Margules' Equation

5. Analyze real world observations

X-section across polar front to validate Thermal Wind

MID-LATITUDE GENERAL CIRCULATION DEMO

MID-LATITUDE GENERAL CIRCULATION DEMO

Instructor Comments

•Prompted students to work in teams to solve problems

- •Deepened student engagement and motivation
- •Prompted greater class discussion and questions

Student Comments

- •Helped reinforce theory
- •Enjoyed doing own experiments
- •"Show us more hands on experiments like these!"

ASSESSMENT

Students participating in laboratory components benefited more compared to those with no lab

Student Mean Scores by Major on Pre and Posttest for Treatment and Comparison Groups Mean Scores (Percentage of Correct Items 100.0% 70.7% 61.2%66.0% 80.0% 63.8% 47.9% 41.2% 60.0% 41.1% 43.9% out of 27) 40.0% Pretest 20.0% Posttest 0.0% Science Non Science Science Non Science Majors Majors Majors Majors (N=66) (N=228) (N=93) (N=69) Treatment Comparison

http://paoc.mit.edu/labguide/

Flier on RAMADDA

Illari, L., and coauthors, 2009: Weather in a Tank: Exploiting laboratory experiments in the teaching of meteorology, oceanography, and climate, *Bull. Amer. Meteor. Soc.,* accepted.

ASSESSMENT

Students participating in laboratory components come from diverse backgrounds

