Authentic Community-Based Projects with Student-Collected Data: An Urban Perspective

Wayne Powell and Rebecca Boger Department of Geology, Brooklyn College, CUNY

Objectives of this Presentation:

 Provide an urban perspective on geoscience education

What motivates an urban student?
How can we play on their strengths?
What is logistically feasible?

Objectives of this Presentation:

 Summarize insights from educational researchers

– What insights can we glean from our colleagues in Schools of Education?

Objectives of this Presentation:

 Provide a case study of our efforts at Brooklyn College to integrate place-based student-driven data collection into our geoscience curriculum, beginning at the freshman experience

What was our thought and planning process?
What has been the initial response been from students and faculty?

Course Design

About <

 Design method followed principles described in "Designing Effective and Innovative Courses" workshop by Barb Tewksbury and Heather MacDonald (2005)

http://serc.carleton.edu/NAGTWorkshops/coursedesign

 Design team included a broad set of stakeholders

Course Design

About

Know your audience

Brooklyn College Environment... The Students

- Majority of BC students are first generation college attendees
- Approximately half of BC students have household income < \$25,000
- Approximately half of BC students work > 20 hours per week

CAREER is very important to our students and their families!

No time for "busy work"

Brooklyn College Environment... The Students

Three main career paths:1. Environmental Geoscientist2. Earth Science Teacher3. Graduate School

Need to offer curricula that prepare for all three potential paths

Brooklyn College Environment... The Students

• **COMMUNITY** is a unifying theme for a diverse population

Ethnicity - Fall 2008

Course Design

Know your audience

Know your limitations and resources

Brooklyn College Environment... The Limitations

- Underfunded... expensive teaching equipment is unavailable
- After class activities are difficult to schedule
- Students do not have transportation
- Need to balance environmental and geological sciences

Brooklyn College Environment... *The Resources*

- Research-grade analytical equipment available (e.g. SEM, XRD)
- Well equipped with computer labs (e.g. GIS)
- Great public transportation system
- Many community partners, parks, and museums

Course Design...

- Know your audience
- Know your limitations and resources
- Place goals first and content last

- Introduce fundamental career-related skills
 - Career preparation is a priority for most immigrant families and first-generation college students
 - Family exerts a strong influence on educational choices of such students

Quantitative Reasoning, GIS, Spreadsheets, Presentation Skills, Teamwork

- Provide an authentic urban geoscience experience
 - Urban students are likely to devalue course work that they perceive to be contrived
 - Urban students perform best when presented with open-ended problems

What would an urban geoscientist do? Pollution, Erosion, Urban Planning

Focus on local issues and resources

- Classrooms in diverse urban settings often have nothing in common but the local setting in which they live
- Local issues that potentially affect their families provide personal motivation

Health Issues, Environmental Justice

Involve the community

- Ethnic students require science career role models who "look like their parents"
- Colleges are perceive as being "*in* the community but not *of* the community"
- May provide volunteer and internship opportunities

Environmental Advocacy Groups, Neighborhood Development Organizations

So... What Kind of Project? What Kind of Data?

- Visually obvious problem
- Can make personal connections
- Clear health link

 Sampling equipment is relatively inexpensive, easy to use, and portable

 Can use available research equipment, and that is relatively easy to operate

- Sampling sites can be selected by students, do not need to be monitored by faculty, and can be revisited if necessary
 - Logistics and transportation are simplified
 - Students can maximize personal connection
 - Control given to students

 Geospatial analysis and datasets can be integrated easily

Student Projects in Fall 2009

- Air Particulate Composition at a Residential Construction Site
- Air Particulate Composition in the Brooklyn College Subway Station
- Comparison of Air Particulates Upwind and Downwind of Industrial Hudson River
- Comparison of Air Particulates in Central and Coastal Brooklyn
- Air Particulate Characteristics with Respect to Relative Humidity

- Particle sample characteristics
 - Abundance
 - Size Distribution

Excel, Basic Statistics, Graphing

Average counts for Dry

50 Microny

74%

TM-1000

58%

- Particle Compositions

 Optical Properties
 Composition by EDC
 - Composition by EDS

Technology, Graphics, Mineral Compositions

2008/12/03

15.02

TM-1000

Particle Morphology
 – PLM and SEM

Technology, Graphics, Mineral Structures

- Geospatial Data
 - Sample and Source Locations
 - Wind Direction

GPS, GIS, Maps

County Summary

The map below shows relative emission density (tons per square mile) by dividing counties into three groups, with the darker-shaded counties having higher relative emission density. This is not an indicator of air quality. To compare counties with respect to air quality and health-related information, visit the <u>AirCompare Web site</u>. To view county emission summaries, select a county from the drop-down menu or from the map. Results will appear beside the map.

> EPA Home | Privacy and Security Notice | Contact Us bas updated on Standay December 6th, 2008. http://www.epa.gov/cgi-bin/broker?_service=data&_debug=48_program dataprog.dw_do_all_emis.sas&pol=230&stflps=36

Electric Generating Unit Natural Gas Chemical Manufacturing Oil & Gas Production Petroleum Refineries Cement Pulp & Paper Industries Brooklyn Sampling Location Staten Island Sampling Location

- Weather Conditions

 Wind Speed and Direction
 Relative Humidity
 Temperature
 - Graphs, Weather, Compass

Immediate Benefits

- Increased engagement in freshmen
- Freshmen thinking of themselves as scientists
- Improved relationships with community partners
- Increased support from Dean's Office

Anticipated Benefits

 Increased number and quality of undergraduate research projects

 Increased summer employment of students in geoscience

 Improved technical, quantitative, and communication skills in upper-level students

Planned Revisions

- Team-teaching model will be implemented: one geologist and one environmental scientist
- Increased cohesion between student projects. Student lead in project selection will be maintained.
- Final presentations will be hosted by a community partner
- Expansion of design-team for revisions

Potential Pitfalls

- Lack of faculty buy-in due to reduction in content

 Majority of faculty (and chair) must be on-board
- Instructor dissatisfaction due to loss of control

 Careful selection of instructors
- Student dissatisfaction due to non-standard course delivery, or loosing sight of the big picture
 - Emphasis on marketability; Constant reassurance, shepherding, and report-outs