Deterministic chaos (or why we care

about initial conditions), and model

inadequacy (or why this makes data
assimilation harder)
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Attractors: Why care?

o Attractors reflect the distribution of states realizable
by a system.
— Attractors define a system’s climatology
— Attractors define a system’s “balance”

— Attractors provide a basis for ensemble construction

e We don’t know if the atmosphere has an attractor,
but NWP models almost certainly do.






Singular values




Singular values

Indicate the factor by which initial error will grow for
infinitesimal errors over a finite time at a particular location
(singular vectors give the directions).

&(t)| = o |&(0)

Can be numerically estimated using linear theory.

=xe

Singular values/vectors are dependent upon the choice of
norm; they are critically state dependent (but that’s a good

thing).
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s \/erification
— Member of perfect ensemble

t=0 time t=3days




= Deterministic forecast
s \/erification
— Member of perfect ensemble

time




Conclusions |

 Chaos is not a problem once we free ourselves
from the chains of determinism

— Chaos is quantifiable
— Chaos is accountable

e We can use this to our advantage in data
assimilation
— Predict a pdf from a set of initial conditions

— Consistent with the atmosphere’s future pdf if the
model is perfect and analysis error is properly
estimated in the initial ensemble (both huge caveats)



The impact of model inadequacy
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We can only aspire to the limitations
imposed by chaos!
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p(x]Y, X)







Even though we have p(x]|Y, X) for a given
model, we cannot get a perfect forecast.




Multi-model ensemble: bounds truth but not a
draw from truth
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Conclusions I

e Chaos is relatively manageable (we can only aspire to
the limitations imposed by chaos); let’s make
probabilistic predictions.

* |In the same way that initial condition uncertainty
guarantees we will never have perfect deterministic
forecasts, model uncertainty guarantees we will
never have perfect probabilistic forecasts.

* |In the same way that deterministic forecasts in the
face of initial condition uncertainty are still useful, so
too are “probabilistic” forecasts in the face of model
uncertainty.



Naive handling of model error in
ensemble filters

T T T I T T
= (Obs likelihood
T ryth
Pricr

* Inflate the prior * e pror |
(background)
ensemble by a
constant fact
before solving the
analysis equation.

Model prior has incorrect mean and spread —
systematic model errors



Example 1: inflation works

Inflated (doubled)
Analysis Error:0.19057

Analysis Error:0.32337
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 Model lies in same plane as truth
* Biased
e Under-dispersive ensemble



Example 2: doesn’t work

Analysis Error:0.3176
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Inflated (doubled)

Analysis Error:0.32427
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* Model lies on orthogonal plane

 Note orthogonal and biased is worse



Example 3: more realistic

Inflated (doubled)

Analysis Error:0.51695 Analysis Error:0.47049
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* Imperfect correlations

 Model not on same plane but has a non-zero projection on truth
* In recursive filters we benefit from repeated applications of
inflation



Lorenz-96 Example

A 40-variable model intended to simulate
propagating waves around a latitude circle

Dynamics are spatially invariant (covariances
too)

Forced with a constant on the right-hand side
— usually F=8 to produce a chaotic system.
Imperfect model generated with F+#£8.



Lorenz-96 Example

 DART section2.pdf page 36 provides some
information on the exercise

— Launch Matlab
— Driver script is run_lorenz_96

Thanks to Jeff Anderson and the DART team for the example and documentation materials!



Suggestions for Exploration

Spin up an ensemble to get a climatological
distribution.

Turn on assimilation and run freely. Does the
filter without localization or inflation track the
observations?

Play with localization and inflation separately to
see the effects. Put them together.

Change F to 6 to assimilate with an imperfect
model. What happens? What if you don’t use
inflation and/or localization?
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