Students and observationally based research
start small, think big, and everyone wins

Sean C. Arms
Dr. Petra Klein
Jose Galvez
University of Oklahoma

10 June 2009
Overview of observational (in-situ) education at the University of Oklahoma
Introduction

- Overview of observational (in-situ) education at the University of Oklahoma
- Highlight issues and current solutions duck tape
Introduction

- Overview of observational (in-situ) education at the University of Oklahoma
- Highlight issues and current solutions duck tape
- Provide examples of links between education and research
Introduction

- Overview of observational (in-situ) education at the University of Oklahoma
- Highlight issues and current solutions duck tape
- Provide examples of links between education and research
- Touch on the future direction of our endeavors
Students

The use of observational data can create a personal connection which in turn enhances ownership of work.
Students

The use of observational data can create a personal connection which in turn enhances ownership of work.

- For primarily teaching institution, obviously in line with faculty goals.
Students

The use of observational data can create a personal connection which in turn enhances ownership of work.

- For primarily teaching institution, obviously in line with faculty goals.
- For research oriented institutions, not always in line with the primary mission (60/30/10).
The use of observational data can create a personal connection which in turn enhances ownership of work.

- For primarily teaching institution, obviously in line with faculty goals.
- For research oriented institutions, not always in line with the primary mission (60/30/10).

However,
Students
The use of observational data can create a personal connection which in turn enhances ownership of work.

- For primarily teaching institution, obviously in line with faculty goals.
- For research oriented institutions, not always in line with the primary mission (60/30/10).

However,

Instructor
The benefits of using observational data in the class room can be achieved by combining course materials and personal research aspects, when appropriate, without sacrificing course goals.
Hands-on labs are the oldest component of observational education at OU (METR 3613)
Hands-on labs are the oldest component of observational education at OU (METR 3613)

Labs have changed over the years to become more fundamental, in terms of the way observational systems work at the circuit level
Hands-on labs are the oldest component of observational education at OU (METR 3613)

Labs have changed over the years to become more fundamental, in terms of the way observational systems work at the circuit level

Arrived at current system of labs after decades of iteration and at least four course instructors
Lab 1

Goal

To gain familiarity with the most common circuits encountered with in-situ observational systems and the tools used to diagnose and troubleshoot them.
Lab 1

Goal

To gain familiarity with the most common circuits encountered with in-situ observational systems and the tools used to diagnose and troubleshoot them

- Circuits - resistors in series and parallel, and bridge circuits
Lab 1

Goal

To gain familiarity with the most common circuits encountered with in-situ observational systems and the tools used to diagnose and troubleshoot them

- Circuits - resistors in series and parallel, and bridge circuits
- Use a digital multimeter to sample resistance, current, and voltage
Lab 1

Goal

To gain familiarity with the most common circuits encountered with in-situ observational systems and the tools used to diagnose and troubleshoot them

- Circuits - resistors in series and parallel, and bridge circuits
- Use a digital multimeter to sample resistance, current, and voltage
- Verify Ohms and Kirchhoff’s circuitry laws
Lab 2

Goal

To gain familiarity with and address the subjective nature of the process of static calibration

- Basics of circular potentiometers
Lab 2

Goal

To gain familiarity with and address the subjective nature of the process of static calibration

- Static calibration of a wind vane
Lab 2

Goal

To gain familiarity with and address the subjective nature of the process of static calibration

- Static calibration of a wind vane
 - Hold vane in steady position, wait for voltage output to stabilize
Lab 2

Goal

To gain familiarity with and address the subjective nature of the process of static calibration

- Static calibration of a wind vane
 - Hold vane in steady position, wait for voltage output to stabilize
- Each student calculates the calibration coefficients
Lab 2

Goal

To gain familiarity with and address the subjective nature of the process of static calibration

- Static calibration of a wind vane
 - Hold vane in steady position, wait for voltage output to stabilize
- Each student calculates the calibration coefficients
 - direction is related to voltage via linear regression
Lab 3

Goal

Determine if a thermistor needs to be recalibrated

- Statically compare output from two sensors (one ‘reference’, one ‘questionable’)

Sean C. Arms Dr. Petra Klein Jose Galvez

Students and observationally based research
Lab 3

Goal

Determine if a thermistor needs to be recalibrated

- Statically compare output from two sensors (one 'reference', one 'questionable')
- Determine errors
Lab 3

Goal

Determine if a thermistor needs to be recalibrated

- Statically compare output from two sensors (one 'reference', one 'questionable')
- Determine errors
- Decide if 'questionable' sensor needs to be recalibrated
Lab 4

Goal

Investigate the response time of a thermistor

- Compare two thermistors while input is changing
Lab 4

Goal

Investigate the response time of a thermistor

- Compare two thermistors while input is changing
- Alter the time constant of one thermistor with a balloon
Lab 4

Goal
Investigate the response time of a thermistor

- Compare two thermistors while input is changing
- Alter the time constant of one thermistor with a balloon
- Estimate the time constant of each thermistor
Lab 5

Goal

Determine how ‘good’ a tipping bucket rain gauge is under the best possible environmental conditions

- Compute ‘single tip’ errors
Lab 5

Goal
Determine how 'good' a tipping bucket rain gauge is under the best possible environmental conditions

- Compute 'single tip' errors
- Investigate errors associated with steady rain rates
Lab 5

Goal

Determine how 'good' a tipping bucket rain gauge is under the best possible environmental conditions

- Compute 'single tip' errors
- Investigate errors associated with steady rain rates
- Comment on other possible errors not addressed in the lab
Introduction
Labs
Long term projects
The next step - ILREUM
Questions

Basic electronics
Static calibration
Calibration check
Dynamic characteristics
Rain Gauges

Student Reaction

Student reaction

What's the point?
Too much work

Each lab results in a 20 page (give-or-take 5) lab report, AMS style

Great, now what? I can troubleshoot a circuit and check the calibration of a potentiometer...and?
Student reaction

What’s the point?
Student reaction

- What’s the point?
- Too much work
Student reaction

- What’s the point?
- Too much work
 - Each lab results in a 20 page (give-or-take 5) lab report, AMS style
Student reaction

- What's the point?
- Too much work
 - Each lab results in a 20 page (give-or-take 5) lab report, AMS style
- Great, now what? I can troubleshoot a circuit and check the calibration of a potentiometer...and?
Instructor reaction

- Tweak labs

Requires students to believe us for an entire year - they are very much a now, now, now group of individuals.

Conclusion - even with 'hands-on' approach, lack of 'hear-and-now' motivation is a show-stopper.

Solution - at the risk of overloading the students, add semester long projects that include the planning, collection, and analysis of data.
Instructor reaction

- Tweak labs
 - duck tape
Instructor reaction

- Tweak labs
 - duck tape
- Really push the point that this experience will help them in senior capstone course (writing, data analysis)
Instructor reaction

- Tweak labs
 - duck tape
- Really push the point that this experience will help them in senior capstone course (writing, data analysis)
 - Requires students to believe us for an entire year - they are very much a now, now, now group of individuals
Instructor reaction

- Tweak labs
 - duck tape
- Really push the point that this experience will help them in senior capstone course (writing, data analysis)
 - Requires students to believe us for an entire year - they are very much a now, now, now group of individuals
- Conclusion - even with 'hands-on' approach, lack of 'hear-and-now' motivation is a show-stopper
Instructor reaction

- Tweak labs
 - duck tape
- Really push the point that this experience will help them in senior capstone course (writing, data analysis)
 - Requires students to believe us for an entire year - they are very much a now, now, now group of individuals
- Conclusion - even with 'hands-on' approach, lack of 'hear-and-now' motivation is a show-stopper
- Solution - at the risk of overloading the students, add semester long projects that include the planning, collection, and analysis of data
Long term projects
Long term project 1 - Sunshine

- Focus on shortwave radiation
Long term project 1 - Sunshine

- Focus on shortwave radiation
- 'Exposure errors' - reflection
Long term project 1 - Sunshine

- Focus on shortwave radiation
- ’Exposure errors’ - reflection
- ’Exposure errors’ - shade
Long term project 2 - Upper air

- Investigate upper air measurements
Long term project 2 - Upper air

- Investigate upper air measurements
- Calculation of basic skew–t parameters in light of sensor errors
Long term project 2 - Upper air

- Investigate upper air measurements
- Calculation of basic skew–t parameters in light of sensor errors
- Highlight open questions with regards to the radiosonde platform
Long term project 3 - Thermo/Hydro

- Focus on Temperature and Relative Humidity
Long term project 3 - Thermo/Hydro

- Focus on Temperature and Relative Humidity
- Full deployment of sensors
Long term project 3 - Thermo/Hydro

- Focus on Temperature and Relative Humidity
- Full deployment of sensors
 - Assembly, Datalogger Programming, deployment, data collection, take-down
Long term project 3 - Thermo/Hydro

- Focus on Temperature and Relative Humidity
- Full deployment of sensors
 - Assembly, Datalogger
 - Programming, deployment, data collection, take-down
- Spatial variability

Sean C. Arms Dr. Petra Klein Jose Galvez

Students and observationally based research
Long term project 3 - Thermo/Hydro

- Focus on Temperature and Relative Humidity
- Full deployment of sensors
 - Assembly, Datalogger Programming, deployment, data collection, take-down
- Spatial variability
Long term project 3 - Thermo/Hydro

- Focus on Temperature and Relative Humidity
- Full deployment of sensors
 - Assembly, Datalogger Programming, deployment, data collection, take-down
- Spatial variability
Long term project 3 - Thermo/Hydro

- Prompted investigation of cold pool phenomena at LTM
Long term project 3 - Thermo/Hydro

- Prompted investigation of cold pool phenomena at LTM
- Has resulted in a conference poster, two conference talks, and a publication!
Long term project 3 - Thermo/Hydro

- Prompted investigation of cold pool phenomena at LTM
- Has resulted in a conference poster, two conference talks, and a publication!
- Proposal in the works.
Long term project 4 - Anemometry

- Investigate exposure 'errors' in vegetation
Long term project 4 - Anemometry

- Investigate exposure 'errors' in vegetation
- ...in an urban setting
Long term project 4 - Anemometry

- Investigate exposure 'errors' in vegetation
- ...in an urban setting
- Become familiar with sonic anemometry
Long term project 4 - Anemometry

- Prompted investigation of rotor-like motions
Long term project 4 - Anemometry

- Prompted investigation of rotor-like motions
Long term project 4 - Anemometry

- Prompted investigation of rotor-like motions
- Construction of the 'Sonic Beast'
Long term project 4 - Anemometry

- Prompted investigation of rotor-like motions
- Construction of the 'Sonic Beast'
- Interesting results
Student reaction

- In-class labs make more sense
Student reaction

- In-class labs make more sense
- Really, really fun to get outside!
Student reaction

- In-class labs make more sense
- Really, really fun to get outside!
- "I feel like we are finally doing meteorology!!11!1! w00t!"
Student reaction

- In-class labs make more sense
- Really, really fun to get outside!
- "I feel like we are finally doing meteorology!!11!1! w00t!"

However, the workload is perhaps a bit much
Student reaction

- In-class labs make more sense
- Really, really fun to get outside!
- "I feel like we are finally doing meteorology!!11!1! w00t!"

However, the workload is perhaps a bit much ...currently taping that one, MacGyver style
ILREUM - the basics

- ILREUM - Innovative Laboratory for Research and Education in Urban Meteorology
ILREUM - the basics

- ILREUM - Innovative Laboratory for Research and Education in Urban Meteorology
- Research - focused on urban roughness sub-layer turbulence
ILREUM - the basics

- ILREUM - Innovative Laboratory for Research and Education in Urban Meteorology
- Research - focused on urban roughness sub-layer turbulence
- Education - enhance educational approach to urban meteorology
ILREUM - the basics

- ILREUM - Innovative Laboratory for Research and Education in Urban Meteorology
- Research - focused on urban roughness sub-layer turbulence
- Education - enhance educational approach to urban meteorology
 - Hands-on activities, online learning modules
ILREUM - the basics

- ILREUM - Innovative Laboratory for Research and Education in Urban Meteorology
- Research - focused on urban roughness sub-layer turbulence
- Education - enhance educational approach to urban meteorology
 - Hands-on activities, online learning modules

Educational Applications

- **Thunderbird Micronet**
 - Rural site with inhomogeneous terrain. Located on a slope with vegetation, and close to a lake.

- **NWC Lab**
 - Suburban site, upwind roughness depends strongly on wind direction. BL transitions can be studied.

- **MobUrb**
 - Mobile urban measurement platform that can be easily deployed in urban areas. A long-term IOP in OKC is an important component of ILREUM

Research Applications

- **Oklahoma Mesonet**
 - Statewide network of 115 surface meteorological stations.

- **OKC Urban Micronet**
 - Planned network of ~20 surface meteorological stations in the OKC metro area.

- **Wind-Tunnel Lab**
 - Large boundary-layer wind tunnel at the University of Hamburg, Germany. Allows studies with different idealized urban roughness configurations and realistic city models (e.g., OKC).
ILREUM - The next step
Questions?

- Innovative Laboratory for Research and Education in Urban Meteorology (ILREUM)
- Career award funded by the National Science Foundation (NSF Grant ATM054788)
- http://micronet.ou.edu/ilreum/