## A Summary of the UCAR google.org Weather and Meningitis Project

**Project Personnel:** Abudulai Adams-Forgor<sup>1</sup>, Mary Hayden<sup>2</sup>, Abraham Hodgson<sup>1</sup>, Thomas Hopson<sup>2</sup>, Benjamin Lamptey<sup>3</sup>, Jeff Lazo<sup>2</sup>, Raj Pandya<sup>2</sup>, Jennie Rice<sup>4</sup>, Fred Semazzi<sup>5</sup>, Madeleine Thomson<sup>6</sup>, Sylwia Trazka<sup>6</sup>, Tom Warner<sup>2</sup>, Tom Yoksas<sup>2</sup>

**Collaborating Institutions:** 1: Navrongo Health Research Centre, Ghana; 2. UCAR/NCAR/UOP, USA; 3. Accra, Ghana; 4. Independent Consultant, Boulder; 5. North Carolina State University, USA; 6. International Research Institute for Climate and Society, Columbia University, USA

Delivered by: Raj Pandya, 8 December 2008

NCAR



NC STATE UNIVERSITY



**Research Applications Laboratory** 







### **Participants, Clockwise from top left:**

Abudulai Adams-Forgor, Madeline Thomson, Benjamin Lamptey, Fred Semazzi, Raj Pandya, Jeff Lazo, Mary Hayden, Thomas Hopson, Abraham Hodgson(tentative), Jennie Rice, Tom Yoksas, Sylwia Trzaska, Tom Warner





## Outline

### Project Goal

- to use meteorological forecasts to help those who are managing Meningitis in the face of limited vaccine availability
- Context
  - An overview of Meningitis
  - Reactive and proactive vaccination strategies
- Problem
  - How to identify areas at risk for an epidemic
  - Short term: How to allocate scarce vaccines
- Method
  - Comprehensive analysis of meningitis risk factors
  - First step: Using meteorological data to target reactive vaccination

### **Context: Meningococcal Meningitis**

- Endemic in Africa
- Sporadic epidemics (e.g., 1996-1997: 250,000 cases)
  - 5-10% fatality rate
  - 10-20% of survivors have permanent impacts, e.g., hearing loss, brain damage, leaning disabilities
- Not a current epidemic threat in US, Europe



### Managing Meningococcal Meningitis Worldwide

- Neisseria meningitidis (Nm), is responsible for meningococcal disease that occurs worldwide
- In the meningitis belt epidemics are usually due to serogroup A meningococcus
  - The currently-available vaccine for serogroup A is scarce and has limited efficacy
  - An improved vaccine is being piloted next year: mass vaccinations throughout the meningitis belt over the next 10 years may eliminate the disease
- In the developed world, the disease is uncommon. Most cases are due to serogroup C meningococcus, for which there are good vaccines
- In the last decade, we have seen the emergence of serogroups X and W135, internationally
  - Serogroup X has no vaccine; a limited efficacy vaccine for W exists

## Global expansion of serogroup A meningococcus ST-5 complex



#### Slide adapted from Pierre Nicolas, WHO



### Suspect meningitis cases/week, /year Burkina Faso, Mali, Niger: 1996 - week 21, 2008



### Cas suspects de méningite Burkina Faso: 1996-2008



### **Cost of 2007 Epidemic in Burkina Faso**

| Health System                             | Meningo Case            |
|-------------------------------------------|-------------------------|
| US\$ 7.103 M                              | US\$ 2.325 M            |
| US\$ 0.52 / inhab                         | US\$ 0.17 /inhab        |
| 2% of National Health Expenditure         | US\$ 90 / case          |
| Reactive Immunization campaign            | Indirect costs          |
| 85%; US\$ 0.44/inhab; US\$1.45/vaccinated | 54.7%; US\$49.2/case    |
| Case management                           | Direct Medical Cost     |
| 9.6%; US\$0.05/inhab; US\$26.4 / case     | 28.2%; US\$25.3/case    |
| Other SR                                  | Direct Non Medical Cost |
| 4,8%, US\$ 0.02/inhab; US\$13.3 /case     | 17.2%; US\$15.5/case    |

Slide from A. Colombini, F. Bationo; Agence de Médecine Préventive

### **Reactive Vaccination**

- The currently available vaccine for Serogroup A (Polysaccharide)
  - Scarce
  - Only provides immunity to the person vaccinated, but still allows them to transmit the disease to others (carriage)
  - Only lasts 1-2 years
  - Doesn't produce an immune response in kids under two
- The currently available vaccine is used reactively to manage the epidemics, once they start.

## 16 Countries implementing enhanced meningitis surveillance, 2008







### The principle of thresholds



Immediately conduct district mass vaccination Strengthen case management

Note that in the developed world epidemic threshold is 1 per 100k per year!!

## Alert and epidemic districts in African meningitis belt: Weeks 1-26, 2008



### From the reaction to the prevention..

### **Reactive Vaccination: A frustrating strategy**



## The new vaccine - Conjugate A

### Promising features

- May provide immunity for up to 10 years
- Once vaccinated, a person can't transmit the disease (no carriage)
- Immunogenic in children under two
- All this implies that the new vaccine (conjugate) can be used proactively

### Caveats..

- The vaccine hasn't yet been evaluated in real-world settigns
- Manufacturing constraints mean that it may require ten years to vaccinate everyone in the meningitis belt
  - Implies the need to continue reactive strategies in response to epidemics
- Doesn't protect against X or W serogroup
  - W was a problem among Hajj pilgrims, and responsible for 12,617 cases and 1,447 deaths in Burkina in 2002 (but has been much less visible lately)
- All this suggests the reactive use of the currently-available vaccine (the polysaccharide) will continue

## Managing and Forecasting Meningitis Epidemics

- Meningococcal meningitis epidemics require three factors...
  - A population susceptible to the emerging serogroup
  - An hyper-invasive/hyper-virulent strain
  - Risk factors including environmental factors, social factors, …

# Why do we think Weather is a Risk Factor for Meningitis?

- Meningitis in Africa is largely, though not entirely, confined to regions with a defined dry season
  - Meningitis epidemics always occur in the dry season
- Meningitis is culturally associated with dust, which is seasonal (in fact, in many languages the name for meningitis is "sand disease")
- Meningitis epidemics end abruptly with the start of the rainy season

### **Two questions:**

- Can what is known about climate and weather risk factors be used to better help manage scarce vaccines in the current reactive strategy
- What kind of research can improve future management, including the proactive application of the new Conjugate A vaccine.

## Comparison of observed epidemic areas and areas predicted from environmental variables

### □ Risk mapping based on env. factors

- Land cover type
- Seasonal absolute humidity profile

NB. Significant but not included in final model Seasonal dust profile, Population density, Soil type





### Slide from Sylwia Trzaska, IRI

### Seasonality of meningococcal disease



#### Slide from Sylwia Trzaska, IRI

Thomson et al., 2006

## Seasonal onset of cases may be triggered by climate



#### Figure 10

Sultan and colleagues demonstrated that the week of onset of epidemic meningococcal disease in Mali shows a linear relationship with the timing of maximum Harmattan winds. Reproduced from *Public Library of Science Medicine* (76) under terms of the Creative Commons Attribution License.

### Slide from Sylwia Trzaska, IRI

Sultan et al. 2006

### Season and Meningococcal Epidemics



## **Our Google Project Components**

0. Overall focus on Ghana, especially Navrongo

Activity 1. Systematic investigation of the factors (not just environmental) that will impact the epidemics

- The role of dust?
- Cultural Practices, Population, etc..

Activity 2. Better forecasts of the end of the dry season

- Preliminary conversations suggest more precise information would help; decision makers are already informally trying to account for this
- Focus on implementation of current understanding in a decision process while doing research
- Activity 3. Preliminary economic assessment of the impact of vaccine intervention – including impact of new weather information
  - Includes a survey of households to identify other factors that may be managed as well

## **Ghana Focus**

- Navrongo, in northern Ghana, has excellent epidemiological surveillance data going back 10 years
- Their staff includes necessary expertise, including Abudulai Adams-Forgor and Abraham Hodgson (the director) who are publishing a paper on weather-meningitis links in Ghana
- Former UCAR post-doc, Benjamin Lamptey provides ties to the operational community in Ghana; which will help with data access and sustainability (ultimately, weather service will provide forecasts)







# Influence Diagrams: A tool for organizing and activating the projects activities

- Compact, graphical way to communicate complex relationships between:
  - Decisions
  - Uncertainties, data, research results
  - Outcomes and objectives
- Corresponds to a mathematical model (Bayesian network)
  - Incorporates probability distributions
  - Optimizes the decision
  - Determines the value of new information, research

### **Example: Orange Grower Decision**



### **Orange Grower Decision with a Forecast**





\*Includes: cultural practices (e.g., use of traditional medicine, head scarves, cooking practices, etc.), demographics (e.g., age, gender), income, presence of other diseases, awareness, and so on.

## Activity 1: Identify socioeconomic factors that influence epidemic and provide baseline data for economic evaluation

- Survey designed to be administered in conjunction with twice-per-year carriage visits in Navrongo District
- Survey will characterize:
  - Economic impact of disease on households
  - Attitudes and beliefs about the disease
  - Socio-economic conditions that may impact risk of disease
  - Cultural knowledge and practices that may influence disease risk (e.g., practice of breathing through a scarf, food practices, use of traditional medicine)
- Could allow an opportunity to expand the decision support system

## Activity 2a: Identify weather variables linked to end of epidemic

- Collect Epidemiological Data
  - Archive Navrongo district epidemiological records
  - Locate and archive less valuable but still good data from neighboring districts
- Collect Weather Data
  - Locate and archive in-situ weather data for Navrongo and surroundings
  - Prepare additional meteorological data from other sources-NCEP reanalysis, COSMIC soundings, etc.
- Compare the two data sets, and identify variables strongly correlated with the end of the epidemic (e.g., sustained absolute humidity)

## Activity 2b: Predict the end of the dry season

- Use TIGGE (WMO THORPEX Interactive Grand Global Ensemble) ensemble model output and other tools to predict weather in Northern Ghana 2-14 days in advance
- Optimize this prediction for the variables associated with meningitis.
- Since this signal is primarily the interplay of synoptic and global scale circulations, we believe we can forecast this



## **OUTPUT: A Decision Support System**

- Meet with local, regional and international decision makers to design data delivery systems that support their needs:
  - Vaccination deployment decisions are made by WHO, Médecines sans Frontières, UNICEF and Red Cross/Red Crescent
  - They do try to prioritize areas where rains are farther away in time for vaccination campaigns
  - Seasonal forecasts are not yet actionable
- If we can build a decision support system, we can use the influence diagram to do a very preliminary evaluation the impact of the decision (Activity 3)

## Some final thoughts...lessons I think I've learned so far (and the rest of team already knew...)

- Listen to decision-makers and in-the-field workers to ensure the decision process is based on real data, meets decision-makers needs, and results in action.
  - E.g.: we've learned that seasonal forecasts are (currently) more difficult to use than short-term forecasts, because decision makers we are working with can't influence the amount of vaccine available.
- Be Humble Meteorology isn't the only factor that influences the disease spread, so it needs to be considered in that context; multiple expertise is needed to even figure out how meteorology can contribute
- Involve the Community Work in Africa (or any community) needs to occur at the invitation of the community, with the community, and address the needs of the community. "No drive-by science"

