
Performative Benchmarking 
of Unidata MetPy with ASV

Jaye Norman 7/23/2025



Why should we benchmark?



C++ification

• Linfeng has created C++ to help MetPy
run faster through bottlenecks like CAPE 
calculation

• We needed a way to quantify his and 
future changes



Other Benefits

• Benchmarking also identifies bottlenecks 
and shows us when merges change the 
performance of the code



Where can I see the results?



unidata.github.io/MetPy-benchmark

unidata.github.io/MetPy-benchmark
unidata.github.io/MetPy-benchmark
unidata.github.io/MetPy-benchmark
unidata.github.io/MetPy-benchmark


ASV Webpage



What software did we use?



GitHub

• Provides a home for the MetPy source 
code

• The MetPy repo holds the benchmarking 
functions and configs for CI/CD

• The MetPy-benchmark repo holds the 
results of the benchmark runs



Airspeed Velocity

• ASV is an open-source python 
benchmarking package 

• Creates environments based on historical 
states of a repo, runs the benchmark 
functions, and returns them in a pretty 
html format



Jenkins

• Unidata’s Jenkins instance is used for 
CI/CD workflows

• Runs on a machine owned by UCAR and 
ensures that the machine specs are the 
same between each benchmark run



Docker

• Within Jenkins, the benchmarks run in a 
Docker container from a Dockerfile

• Improves consistency between runs and is 
portable to many devices for local 
benchmarking



GitHub Actions

• The MetPy-benchmark repo has a GHA 
that uses ASV to generate the html from 
the results 

• Action also deploys files to a static page



How does benchmarking with 
ASV work?



File Tree

• asv.conf.json: 
configuration file for ASV

• asv/results: where the 
results are stored

• benchmarks/.py files: 
benchmarking snippets



Benchmark Dataset



Benchmark setup_cache



Benchmark setup



Example Benchmark



How does the workflow run?



Jenkins Trigger

1) Jenkins is triggered Saturday morning



Jenkins Setup

2) Jenkins clones MetPy



Jenkins Setup

3) Jenkins searches MetPy’s history for 
minor version commits and recent merges



Jenkins Setup

4) From MetPy-benchmark, Jenkins copies 
the existing results



Jenkins Setup

5) Jenkins builds a docker container from 
the Dockerfile



Docker runs Benchmarks

1) With a docker run command, the docker 
file runs benchmarks on the commit file



Docker runs Benchmarks

2) If there are already successful results for a 
certain commit, the benchmarks are skipped



Docker runs Benchmarks

3) If there are not, like for a new commit, 
the benchmarks are run for this commit



Jenkins saves results

1) The docker container terminates when it’s 
finished



Jenkins saves results

2) Jenkins pushes the results, old and new, 
to the Metpy-benchmark repository 



Metpy-benchmark Deployment

1) Upon push to Metpy-benchmark, a GitHub 
Action creates the html for the static page



Metpy-benchmark Deployment

2) The GitHub action deploys the html to the 
static page



Can we see performance changes 
before we merge commits?



Comparative Benchmarking

• Comparative benchmarking is when you 
compare the performance of two 
branches

• ASV has a built-in function for this, and 
when combined with GHA, can do it 
automatically on pull requests



Comparative GitHub Action

• We can compare the current main branch 
to the pull request branch using their 
commit hashes if the PR is labelled. 

• Currently a failure occurs when a 
benchmark is 10% slower, but this is 
customizable 



Example GitHub Action



Local Comparisons

• You can also locally run a comparison 
assuming you have an untouched local 
main branch and have ASV installed

• This allows you to see if your changes are 
working as you anticipate



Example Local Comparison

• This compares main and test_cpp_cape



Example Local Comparison

• The dewpoint function is 98% slower



Example Local Comparison

• The wet_bulb function is 97% faster



Example Local Comparison

• The p_to_h function hasn’t changed much



NSF Unidata is one of the University 
Corporation for Atmospheric Research 

(UCAR)'s Community Programs (UCP), and is 
funded primarily by the U. S. National Science 

Foundation (Grant AGS-1901712).


	Slide 1: Performative Benchmarking of Unidata MetPy with ASV
	Slide 2: Why should we benchmark?
	Slide 3: C++ification
	Slide 4: Other Benefits
	Slide 5: Where can I see the results?
	Slide 6: unidata.github.io/MetPy-benchmark
	Slide 7: ASV Webpage
	Slide 8: What software did we use?
	Slide 9: GitHub
	Slide 10: Airspeed Velocity
	Slide 11: Jenkins
	Slide 12: Docker
	Slide 13: GitHub Actions
	Slide 14: How does benchmarking with ASV work?
	Slide 15: File Tree
	Slide 16: Benchmark Dataset
	Slide 17: Benchmark setup_cache
	Slide 18: Benchmark setup
	Slide 19: Example Benchmark
	Slide 20: How does the workflow run?
	Slide 21: Jenkins Trigger
	Slide 22: Jenkins Setup
	Slide 23: Jenkins Setup
	Slide 24: Jenkins Setup
	Slide 25: Jenkins Setup
	Slide 26: Docker runs Benchmarks
	Slide 27: Docker runs Benchmarks
	Slide 28: Docker runs Benchmarks
	Slide 29: Jenkins saves results
	Slide 30: Jenkins saves results
	Slide 31: Metpy-benchmark Deployment
	Slide 32: Metpy-benchmark Deployment
	Slide 33: Can we see performance changes before we merge commits?
	Slide 34: Comparative Benchmarking
	Slide 35: Comparative GitHub Action
	Slide 36: Example GitHub Action
	Slide 37: Local Comparisons
	Slide 38: Example Local Comparison
	Slide 39: Example Local Comparison
	Slide 40: Example Local Comparison
	Slide 41: Example Local Comparison
	Slide 42

