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Why should we benchmark?



C++ification

• Linfeng has created C++ to help MetPy
run faster through bottlenecks like CAPE 
calculation

• We needed a way to quantify his and 
future changes



Other Benefits

• Benchmarking also identifies bottlenecks 
and shows us when merges change the 
performance of the code



Where can I see the results?



unidata.github.io/MetPy-benchmark
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ASV Webpage



What software did we use?



GitHub

• Provides a home for the MetPy source 
code

• The MetPy repo holds the benchmarking 
functions and configs for CI/CD

• The MetPy-benchmark repo holds the 
results of the benchmark runs



Airspeed Velocity

• ASV is an open-source python 
benchmarking package 

• Creates environments based on historical 
states of a repo, runs the benchmark 
functions, and returns them in a pretty 
html format



Jenkins

• Unidata’s Jenkins instance is used for 
CI/CD workflows

• Runs on a machine owned by UCAR and 
ensures that the machine specs are the 
same between each benchmark run



Docker

• Within Jenkins, the benchmarks run in a 
Docker container from a Dockerfile

• Improves consistency between runs and is 
portable to many devices for local 
benchmarking



GitHub Actions

• The MetPy-benchmark repo has a GHA 
that uses ASV to generate the html from 
the results 

• Action also deploys files to a static page



How does benchmarking with 
ASV work?



File Tree

• asv.conf.json: 
configuration file for ASV

• asv/results: where the 
results are stored

• benchmarks/.py files: 
benchmarking snippets



Benchmark Dataset



Benchmark setup_cache



Benchmark setup



Example Benchmark



How does the workflow run?



Jenkins Trigger

1) Jenkins is triggered Saturday morning



Jenkins Setup

2) Jenkins clones MetPy



Jenkins Setup

3) Jenkins searches MetPy’s history for 
minor version commits and recent merges



Jenkins Setup

4) From MetPy-benchmark, Jenkins copies 
the existing results



Jenkins Setup

5) Jenkins builds a docker container from 
the Dockerfile



Docker runs Benchmarks

1) With a docker run command, the docker 
file runs benchmarks on the commit file



Docker runs Benchmarks

2) If there are already successful results for a 
certain commit, the benchmarks are skipped



Docker runs Benchmarks

3) If there are not, like for a new commit, 
the benchmarks are run for this commit



Jenkins saves results

1) The docker container terminates when it’s 
finished



Jenkins saves results

2) Jenkins pushes the results, old and new, 
to the Metpy-benchmark repository 



Metpy-benchmark Deployment

1) Upon push to Metpy-benchmark, a GitHub 
Action creates the html for the static page



Metpy-benchmark Deployment

2) The GitHub action deploys the html to the 
static page



Can we see performance changes 
before we merge commits?



Comparative Benchmarking

• Comparative benchmarking is when you 
compare the performance of two 
branches

• ASV has a built-in function for this, and 
when combined with GHA, can do it 
automatically on pull requests



Comparative GitHub Action

• We can compare the current main branch 
to the pull request branch using their 
commit hashes if the PR is labelled. 

• Currently a failure occurs when a 
benchmark is 10% slower, but this is 
customizable 



Example GitHub Action



Local Comparisons

• You can also locally run a comparison 
assuming you have an untouched local 
main branch and have ASV installed

• This allows you to see if your changes are 
working as you anticipate



Example Local Comparison

• This compares main and test_cpp_cape



Example Local Comparison

• The dewpoint function is 98% slower



Example Local Comparison

• The wet_bulb function is 97% faster



Example Local Comparison

• The p_to_h function hasn’t changed much
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