Enabling Declarative Syntax while using Matplotlib's pcolormesh in MetPy

By: Nathaniel Martinez

• Rising 4th year at UChicago

About Me!

• Computer Science & Environmental Science • Interning since the end of May - Software development process Adding declarative syntax for pcolormesh() Documentation and example improvements

Software Development Process

• Planning Identify the issue to be fixed or new functionality to be added Identify stakeholders' software needs • Design Compile a design resolving planning

the issues identified while

MATPLOT conto olomesh New Metpy Skewt

Software Development Process

Implementation fulfill the identified criteria •Testing

• Draw from the design to write the code to

•Create sufficient tests to ensure all new or edited code is verified to work properly

test_gempak.py test_metar.py test_nexrad.py test_station_data.py test_tools.py

> ___pycache___ test_cartopy_utils.py test_ctables.py test_declarative.py test_mapping.py test_skewt.py test_station_plot.py test_wx_symbols.py

test_deprecation.py test_packaging.py

Software Development Process

Integration •Create a pull request for the new code into the code repository, resolving any conflicts

26 checks passed	
V 💭 macOS 3.8	Details
3.8 requirements.txt	Details
CodeQL	Details
V C macOS 3.8	Details
V Flake8	Details
3.8 requirements.txt	Details
V Vindows 3.9	Details
V 💭 3.9 requirements.txt	Details

•Simplifies plotting process No need to call Matplotlib functions directly Add support for pcolormesh

Declarative Syntax

d	a	t
r	а	S
r	а	S
r	а	S
r	а	S
р	а	n
р	а	n
р	а	n
р	а	n
р	а	n
р	С	
р	С	
р	С	
p	C	•


```
ta = xr.open_dataset(get_test_data('narr_
ster = RasterPlot()
ster_data = data
ster.field = 'Temperature'
ster.level = 700 * units.hPa
nel = MapPanel()
nel.area = 'us'
nel.projection = 'lcc'
nel.layers = <mark>[</mark>'coastline'<mark>]</mark>
nel.plots = [raster]
= PanelContainer()
.size = (8.0, 8)
panels = [panel]
draw()
```


example.nc',	<pre>as_file_obj=False)</pre>			

Plots a grid of values •Helpful in plotting key meteorological data •Temperature, wind speed, humidity, etc. Potential for radar reflectivity plots

Raster Plots

# Pull sweep	data out of = 0	the file			
az = n diff = diff[d diff[d avg_sp az = (<pre>t item in ray p.array([ray np.diff(az) iff > 180] -= iff < -180] -= acing = diff az[:-1] + az p.concatenate</pre>	[0].az_ang = 360. += 360. .mean() [1:]) / 2	gle for ray	in f.swee	eps[sweep
# of (ref_hd ref_ra	<pre>item is a dia header, data r = f.sweeps nge = (np.ara np.array([ray</pre>	array) [sweep][0] ange(ref_h	[4][b'REF' ndr.num_gat][0] :es + 1) -	0.5) * r
rho_ra	<pre>r = f.sweeps nge = (np.ara np.array([ray</pre>	ange(rho_ł	ndr.num_gat	es + 1) -	
add_me for va # da	<pre>xes = plt.sub tpy_logo(fig) r_data, var_ Turn into an ta = np.ma.an ta[np.isnan(c</pre>	, 190, 85, range, ax <i>array, th</i> rray(var_c	size='lar in zip((re nen mask lata)	ge') f, rho), (ref_rang
xl	<i>Convert az,ra</i> ocs = var_ran ocs = var_ran	nge * np.s	sin(np.deg2	and the second	
ax ax ax ax	<pre>Plot the data .pcolormesh(x .set_aspect(.set_xlim(-40) .set_ylim(-30) d_timestamp(a)</pre>	klocs, yld 'equal', ' 0, 20) 0, 30)	datalim')		
plt.sh	ow()				

+ avg_spacing])) to a tuple ref_hdr.gate_width + ref_hdr.first_gate veep]]) rho_hdr.gate_width + rho_hdr.first_gate nge, rho_range), axes): axis])) axis]))

ep]])

Documentation Improvements

•Updating Documentation Updated examples to reflect added functionality Resolved example issues and demonstrated best

practices for users to follow

 $cent_lon = f.lon$ cent_lat = f.lat

Convert az,range to x,y xlocs = rng * np.sin(np.deg2rad(az[:, np.newaxis])) ylocs = rng * np.cos(np.deg2rad(az[:, np.newaxis])) xlocs, ylocs = azimuth_range_to_lat_lon(az, rng, cent_lon, cent_lat)

Grab azimuths and calculate a range based on number of gates az = np.array(datadict['start_az'] + [datadict['end_az'][-1]]) rng = np.linspace(0, f.max_range, data.shape[-1] + 1) # Grab azimuths and calculate a range based on number of gates, # both with their respective units

az = units.Quantity(np.array(datadict['start_az'] + [datadict['end_az'][-1]]), 'degrees') rng = units.Quantity(np.linspace(0, f.max_range, data.shape[-1] + 1), 'kilometers')

Extract central latitude and longitude from the file

• Thank you to Unidata, UCAR/NCAR/UCP for having me! Thank you to Drew Camron and Ryan May for their guidance and mentorship this summer! • Thanks to Rhoen, Hassan, and the other interns for having a great summer together!

Acknowledgments

