
MetPy 1.1.0 Milestones: Code 
Fixes and Verification
LYDIA BUNTING 

SUMMER 2021



Acknowledgements
• Unidata and UCAR

• Ryan May and Drew Camron

• Connor Cozad and Izzy Pfander



About
MetPy

What it is: 

A collection of tools in Python for reading, visualizing, and 
performing calculations with weather data.

Development is supported by the National Science Foundation..

Primary Uses:

Meteorological research, including performing calculations, 
reading data, and plotting.



MetPy Usage Examples
1. Plotting time series data as a meteogram

(right)

2. Plotting data on a map using XArray and 
CartoPy (below)



1.1.0 
Milestones

 Code enhancements or bug fixes to be addressed for the 
1.1.0 update.

 Presented as “issues” in GitHub to be addressed before the 
update is implemented.



Issue 1844

Initial problem: 

• pyproj CF (climate and forecasting) output 
not accepted by metpy.assign_crs().
The function Metpy.assign_crs() assigns 

a coordinate reference system to the 
MetPy data array based on CF projection 
attributes.

Initial fix: 

• Adding earth_radius to the input 
directory.



Issue 1844

New problem: 

• Latitude of projection center missing in CF 
listing.
The value of lat_0 is lost.

Cause: 

• Conversion from PyProj to CF results in a 
value 0 for the attribute inverse_flattening.

New fix: 

• Interpret the 0 inverse_flattening
as a spherical datum and do not 
pass that value on.



Addressing error
• To address the issue, added an ‘if’ statement to address the case where inverse_flattening = 0



Code Verification

• Before fixes are merged with MetPy, need to verify 
it works as expected.

• This is done through unit testing.

• Starts with the smallest components first:
• Ensures they work properly before integrating them with 

larger portions of code.

DEFINITION: Unit Testing
A piece of code that 

“activates” a piece of a 
system to ensure it behaves 
as expected by developers.



Code Verification
Goal

• Isolate each part of the program and show it is correct.

Importance

• Finds problems early as code is developed. 
• Forces developers to think through code thoroughly.
• Neglecting tests can lead to broken code and problems for users.



Test for Issue 1844
• Need to test new code by writing a test to “activate” it.

• For Issue 1844, introduce the case where inverse_flattening = 0.



Pull request process
1. Submit pull request

• Submits the changed code for testing and review 

2. Automated tests
• Identify code that may have been missed by manual 

testing process.
• Check for drops in code coverage and style variations.

3. Code review by Unidata staff

4. Merging
• Performed once all tests and details of the pull 

request are addressed. 



Complete Process

Identify issue Determine cause 
of issue

Determine a 
potential fix and 

write code

Write tests to 
verify code works 

as expected

Submit a pull 
request

Address issues 
identified in pull 

request tests 

Repeat previous 
two steps until all 

tests pass
Merge code



Summary
• Code verification is an essential component to code development.
 Unit testing is the primary way this is achieved. 

• Failing to perform code verification can lead to broken code and lack of functionality. 

• MetPy is a program used for a variety of applications and by a variety of users: 
 This makes adequate testing even more important.
 Broken code can have a lasting impact on research & user experience. 



Thank you!


	MetPy 1.1.0 Milestones: Code Fixes and Verification
	Acknowledgements
	About�MetPy
	MetPy Usage Examples
	1.1.0 Milestones
	Issue 1844
	Issue 1844
	Addressing error
	Code Verification
	Code Verification
	Test for Issue 1844
	Pull request process
	Complete Process
	Summary
	Thank you!

