
Robust Data Type Testing
and Dask Support in MetPy

Russell P. Manser1, Ryan May2

1Texas Tech University, 2Unidata

Dask support in MetPy will enable users to distribute calculations
across large meteorological datasets

• Python package for meteorological calculations and plotting
• Designed and developed for community use and contributions
• Dependent upon the scientific computing stack

Implement Dask in Pint

Support duck Dask Arrays in Xarray

Dask array tests in MetPy

4. Dask Integration

Pint

• Python package that enables larger-than-memory and
 distributed memory computing for large datasets
• Has user API similar to common Python data science tools
• Part of scientific computing stack

Figure 3: a graph of the type casting
hierarchy between Xarray, Dask, and Pint.

See it on GitHub!

NumPy
Array} } Dask

Array

See it on GitHub!

a) b)

The number of scientists and students using
MetPy is growing rapidly. New features continue to
be requested to meet the needs ot the exapnding
user base. One of these needs is support for
efficient calculations on larger-than-memory
datasets. Support for Dask Arrays in MetPy will
help users derive quantities from inherently large
datasets such as climate observations and model
output, ensemble model output, and
high-resolution cloud model output.

Systematic testing for data types is a hidden need
of users as well. MetPy functions are not explicitly
tested against supported data types, which results
in bugs. An automated and systematic testing suite
is required to improve robustness of MetPy
functions and add Dask Array support.

Figure 1: examples of a) a model forecast and b) upper air observations plotted
with MetPy (https://unidata.github.io/python-gallery/examples/index.html).

Figure 2: depiction of a Dask Array composed of multiple NumPy arrays
that vary in size. Image credit: https://docs.dask.org/en/latest/array.html

• Integrate Dask support in upstream libraries
• Design automated data type tests
• Identify functions that need special handling or
refactoring for full Dask support

2. Objectives

1. Introduction

Figure 4: an example of how test data is added
for a function in the proposed framework.

3. Challenges
• The type casting hierarchy in the scientific computing stack is not clearly defined
• There are many operations and functions that are difficult to distribute with Dask
• MetPy needs to remain accessible for community use and contributions

• Implement the proposed testing framework for all calc modules in MetPy
• Address challenges for Dask support in individual MetPy functions

6. Future Work

5. Data Type Testing in MetPy

The order in which data types are wrapped (type casting hierarchy) and how those
wrapped types behave (duck typing) is crucial for expected behavior of each type.

“If it walks like a duck, swims like a duck, and quacks like a
duck, then it probably is a duck.”

MetPy generally supports data types common to the scientific computing stack. However,
these types are not always explicitly tested against individual functions. An automated
and systematic testing suite is proposed here to a) explicitly test all supported data types
and b) to provide the framework for testing of new data types (e.g., Dask Array).

Supported Types

• Scalars
• NaNs
• NumPy array
• NumPy masked array
• Xarray Variable and DataArray

Acknowledgements: Drew Camron and Sean Arms for additional mentorship, Jon Thielen for general encouragement and guidance
with implementing the Dask collection interface in Pint, and the maintainers of Pint and Xarray for help with PRs. This work was funded
primarily by the National Science Foundation (Grant AGS-1901712).

Function name
Arguments
Truth

