____ _ \sim 5 B \leq \geq G \sim -< \sim ---- \geq

Ocean, Atmosphere & Climate Model Assessment for Everyone

Rich Signell USGS Woods Hole, MA Unidata 2014 DeSouza Award Presentation Boulder, CO : Sep 15, 2014

← → C ↑ □ cedb.asce.org/cgi/WWWdisplay.cgi?76883
🚻 Apps 🧏 Gmail - Inbox (🗢 Bank of Americ 🕒 Enphase Energy 💹 Calendar 🜌 WHSC Intranet 🕒 Rich Signell's W 🍐 Emoji cheat she 🍐 Emoji cheat she 💧 Emoji cheat she
AVIENICAN SOCIETY
KNOWLEDGE & LEARNING 📕 LEADERSHIP & MANAGEMENT 📕 ISSUES & ADVOCACY 📕 MEMBERSHIP & COMMUNITY
Find a Local Group A Find a Technical Group A
CE Database Search L Descriptions L Search Tips L Subject Heading List
NetCDF: A Public-Domain-Software Solution to Data-Access Problems for Numerical Modelers
by Harry L. Jenter and Richard P. Signell
pp. 72-82
Purchase Information
Permissions for Reuse 🕤
Document type: Conference Proceeding Paper
Part of: Estuarine and Coastal Modeling (1991)
Computer software
Data processing
Databases

US Integrated Ocean Observing System (IOOS[®])

International U.S. **IOOS[®]** Plan defines: Global Earth Integrated Earth GEOSS Observing System IEOS **Global Component** Observing System of Systems **Coastal Component** • **17 Federal Agencies 11 Regional Associations** Integrated Ocean Global Ocean 1005 GOOS **Observing System** Observing System NANOOS

How well do models simulate events?

Hurricane Sandy, Ocean Grove Pier -New Jersey, October 29, 2012 -Photograph by Bob Bowné

Deepwater Horizon Oil Spill, Northern Gulf of Mexico, May 24, 2010. Image from MODIS on NASA's Terra Satellite.

JOOS Core Principles

Adopt open standards & practices

- Avoid customer-specific stovepipes
- Standardized access services implemented at data providers

Issue: Ocean grids are not regularly spaced!

Unstructured (e.g. triangular) grid

Time Series, Trajectories

Meteorology and Wave Buoy in the Gulf of Maine. Image courtesy of NOAA.

Ocean Glider. Photo by Dave Fratantoni, Woods Hole Oceanographic Institution

NetCDF Climate and Forecast (CF) Conventions provide a solution

Groups using CF:

GO-ESSP: Global Organization for Earth System Science Portal

IOOS: Integrated Ocean Observing System

ESMF: Earth System Modeling Framework

OGC: Open Geospatial Consortium (GALEON: WCS profile)

UGRID Conventions on GitHub

Mesh2:topology dimension = 2 ;

Example NcML (on StackOverflow)

Here's an example:

```
<variable name="v" shape="time2 sigma node" type="float">
 <attribute name="standard name" value="barotropic northward sea water velocity"/>
 <attribute name="mesh" value="selfe mesh"/>
 <attribute name="location" value="node"/>
 <attribute name="coordinates" value="y x"/>
 <attribute name="units" value="m/s"/>
</variable>
<aggregation type="union">
 <netcdf xmlns="http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2">
  <aggregation dimName="time" type="joinExisting">
   <scan
    location="/data/ftp/upload/Inundation/vims/selfe tropical/runs/Rita/3D varied row
    regExp=".*[0-9]{1}_WaterLevel\.nc$"/>
  </aggregation>
 </netcdf>
 <netcdf xmlns="http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2">
  <aggregation dimName="time" type="joinExisting">
   <scan
    location="/data/ftp/upload/Inundation/vims/selfe_tropical/runs/Rita/3D_varied_row
    regExp=".*[0-9]{1} SigWaveHeight\.nc$"/>
  </aggregation>
 </netcdf>
```


IOOS Model Data Interoperability Design

WMS Browsing with THREDDS/ncWMS

Matlab NCTOOLBOX https://github.com/nctoolbox

- Objective: Make it simple to access CF data
- Example function:
- [t, geo]=nj_tslice(URL,'temp',1);
- t = 22x120x180 single
- - lat: [120x180 single]
 - Ion: [120x180 single]
 - z: [22x120x180 double]
 - time: 733582 (matlab datenum)
- nj_tslice works identically for ROMS, POM, ECOM, WRF, Wavewatch3
- URL can be: local NetCDF, remote NetCDF, NcML, OpenDAP Data URL

Matlab NCTOOLBOX https://github.com/nctoolbox

nc = ncugrid(dap_url)
ncvar = nc.uvariable('zeta')
z = ncvar.data(itime,:)
grid = ncvar.grid(itime,:)

z = 26441x1 single grid =

lat: [26441x1 single] lon: [26441x1 single] time: 730970 (matlab datenum) connectivity: [52025x3 int32]

Comparing Models with Data in Matlab

Skidaway modena glider (Sep 11-23)

compare_secoora_model_sections.m (using nc_genslice.m)

WILKIN AND HUNTER: MID-ATLANTIC BIGHT MODELS SKILL ASSESSMENT

Figure 2. (left) Temperature and (right) salinity versus along-track distance and depth for the MAB AUGV deployment of 04/2010 (see Figure 1 for trajectory). Top row: reduced resolution observation set

test_ci_ugrid3.m

3D visualization of data with IDV

NetCDF Subset Service to CSV

WHCMSC Sediment Transport Group

THREDDS Data Server

Catalog http://geoport.whoi.edu/thredds/catalog/coawst_4/use/fmrc/catalog.html

Dataset: coawst_4_use/Best Time Series

- Data format: netCDF
- Data type: GRID
- · Naming Authority: gov.usgs.er.whsc
- ID: coawst_4/use/fmrc/coawst_4_use_best.ncd

Documentation:

- summary: Best time series, taking the data from the most recent run available.
- summary: ROMS USE Output from COAWST
- <u>Carolinas Coastal Change Program</u>
- <u>ReadMe.txt</u>

Access:

- 1. OPENDAP: /thredds/dodsC/coawst_4/use/fmrc/coawst_4_use_best.ncd
- 2. NetcdfSubset: /thredds/ncss/grid/coawst_4/use/fmrc/coawst_4_use_best.ncd
- 3. WMS: /thredds/wms/coawst_4/use/fmrc/coawst_4_use_best.ncd
- 4. ISO: /thredds/iso/coawst_4/use/fmrc/coawst_4_use_best.ncd
- 5. NCML: /thredds/ncml/coawst_4/use/fmrc/coawst_4_use_best.ncd
- 6. UDDC: /thredds/uddc/coawst_4/use/fmrc/coawst_4_use_best.ncd

NCSS Grids As Point Data (Gridded Dataset)

Dataset: /thredds/ncss/grid/coawst_4/use/fmrc/coawst_4_use_best.ncd (Gridded Dataset Description)

Base Time: 2012-06-25T01:00:00Z

You must select at least one Variable and a Lat/Lon location. Select Variable(s):

- angle = angle between XI-axis and EAST
- f = Coriolis parameter at RHO-points
- h = bathymetry at RHO-points
- mask_psi = mask on psi-points
- mask_rho = mask on RHO-points
- mask_u = mask on U-points
- mask_v = mask on V-points
- pm = curvilinear coordinate metric in XI
- pn = curvilinear coordinate metric in ETA

Variables with Time coordinate time

- Dwave = wind-induced wave direction
- Hwave = wind-induced significant wave height
- Lwave = wind-induced mean wavelength
- Pwave_bot = wind-induced bottom wave Period
- Pwave_top = wind-induced peak surface wave Period
- Uwave_rms = wind-induced bottom orbital velocity
- Uwind = surface u-wind component
- Vwind = surface v-wind component
- Zo_app = apparent bottom roughness length
- Zo_def = default bottom roughness length
- bed_wave_amp = bed wave excursion amplitude
- bedload_Usand_01 = bed load flux of sand in U-direction, size class 01
 bedload_Usand_02 = bed load flux of sand in U-direction, size class 02
 bedload_Usand_03 = bed load flux of sand in U-direction, size class 03
- bedload_Usand_04 = bed load flux of sand in U-direction, size class 04
- bedload_Usand_05 = bed load flux of sand in U-direction, size class 05
- bedload_Usand_06 = bed load flux of sand in U-direction, size class 06

Choose Lat/Lon Location:

Service

THREDDS data server NetCDE Subset

Latitude: ^{39.5}	
Longitude ^{-69.5}	
Within Bounding Box:	
north	
48.4639	
west -101.7498 -53.2530 east	
11.8884	
south	
Choose Time Subset:	
Time range Single time	
Starting 2014-08-27T01:00:00Z	
Ending: 2014-08-28T00:00:00Z	
reset to full extension	
Choose Vertical Level:	
Level:	
Choose Output Format:	

Format: CSV

CSV Time Series from Subset Service

date,lat[unit="degrees north"],lon[unit="degrees east"],Hwave[unit="meter"] 2014-08-27T01:00:00Z, 39.5, -69.5, 1.273842692375183 2014-08-27T02:00:00Z, 39.5, -69.5, 1.3142027854919434 2014-08-27T03:00:00Z, 39.5, -69.5, 1.3615976572036743 2014-08-27T04:00:00Z, 39.5, -69.5, 1.398990273475647 2014-08-27T05:00:00Z, 39.5, -69.5, 1.419392704963684 2014-08-27T06:00:00Z,39.5,-69.5,1.426921010017395 2014-08-27T07:00:00Z, 39.5, -69.5, 1.4251813888549805 2014-08-27T08:00:00Z, 39.5, -69.5, 1.4150882959365845 2014-08-27T09:00:00Z,39.5,-69.5,1.406528115272522 2014-08-27T10:00:00Z, 39.5, -69.5, 1.4104422330856323 2014-08-27T11:00:00Z, 39.5, -69.5, 1.4303393363952637 2014-08-27T12:00:00Z, 39.5, -69.5, 1.4648756980895996 2014-08-27T13:00:00Z, 39.5, -69.5, 1.5110485553741455 2014-08-27T14:00:00Z, 39.5, -69.5, 1.5633442401885986 2014-08-27T15:00:00Z, 39.5, -69.5, 1.6074210405349731 2014-08-27T16:00:00Z, 39.5, -69.5, 1.6265686750411987 2014-08-27T17:00:00Z, 39.5, -69.5, 1.6184144020080566 2014-08-27T18:00:00Z, 39.5, -69.5, 1.5933209657669067 2014-08-27T19:00:00Z, 39.5, -69.5, 1.5608850717544556 2014-08-27T20:00:00Z, 39.5, -69.5, 1.527510643005371 2014-08-27T21:00:00Z, 39.5, -69.5, 1.5050616264343262 2014-08-27T22:00:00Z, 39.5, -69.5, 1.5094025135040283 2014-08-27T23:00:00Z, 39.5, -69.5, 1.5698728561401367 2014-08-28T00:00:00Z, 39.5, -69.5, 1.7087903022766113

CSV request is a "RESTful" URL: http://geoport.whoi.edu/thredds/ncss/grid/coawst_4/use/fmrc/coawst_4_use_best.ncd?var =Hwave&latitude=39.5&longitude=-69.5&time_start=2014-08-27T01:00:00Z&time_end=2014-08-28T00:00:00Z&vertCoord=&accept=csv

Accessing the CSV data in Excel

	🛃 🧐 🔹 (°° 🕞 🖛	coawst_4_use_best.	ncd [Read-Only] - Microsoft Ex	cel	
F	ile Home Insert Pa	age Layout Formulas Data	Review View Acrobat T	eam	a 🕜 🗆 🗗
Pas	Calibri - 11 B I U - A ste ste ste Font	▼ ▼ ■ ■ General ▲ ▲ ■ ■ ■ ● ● ▲ ■ ■ ■ ■ ● ● ▲ ■ ■ ■ ● ● ● ▲ ■ ■ ● ● ● ● ▲ Alignment □ Number	I Image: Conditional Formattin % ,	g ▼ 📲 Insert ▼ Image: Delete ▼ Image: Delete ▼ Image: Delete ▼ Cells	∑ •
	A1 •	<i>f</i> ≭ date			
	Α	В	С	D	E F G
1	date	lat[unit="degrees_north"]	lon[unit="degrees_east"]	Hwave[unit="m	ieter"]
2	2014-08-27T01:00:00Z	39.5	-69.5	1.273843	
3	2014-08-27T02:00:00Z	39.5	-69.5	1.314203	
4	2014-08-27T03:00:00Z	39.5	-69.5	1.361598	
5	2014-08-27T04:00:00Z	39.5	-69.5	1.39899	
6	2014-08-27T05:00:00Z	39.5	-69.5	1.419393	
7	2014-08-27T06:00:00Z	39.5	-69.5	1.426921	
8	2014-08-27T07:00:00Z	39.5	-69.5	1.425181	
9	2014-08-27T08:00:00Z	39.5	-69.5	1.415088	
10	2014-08-27T09:00:00Z	39.5	-69.5	1.406528	
11	2014-08-27T10:00:00Z	39.5	-69.5	1.410442	
12	2014-08-27T11:00:00Z	39.5	-69.5	1.430339	
13	2014-08-27T12:00:00Z	39.5	-69.5	1.464876	
14	2014-08-27T13:00:00Z	39.5	-69.5	1.511049	
15	2014-08-27T14:00:00Z	39.5	-69.5	1.563344	
16	2014 09 27715:00:007	20 E	60 E	1 607/01	

Access the CSV data in Python, R, etc

IP[y]:	Notebook Iris test 2 Last saved: Mar 28 10	0:17 AM
File Ed	dit View Insert Cell Kernel Help	
8 X	Code Cell Toolbar: None	
In [12]:	<pre># DAP URL: 30 year East Coast wave hindcast (Wave Watch 3 di cubes = iris.load('http://geoport.whoi.edu/thredds/dodsC/fmu</pre>	riven by CFSR Winds) cc/NCEP/ww3/cfsr/4m/best');
In [13]:	print cubes	
	0: Significant height of combined wind waves and swell @ Gro 1: u-component of wind @ Ground or water surface / m/s (time 2: v-component of wind @ Ground or water surface / m/s (time 3: Primary wave direction (degree true) @ Ground or water su 4: Primary wave mean period @ Ground or water surface / s (t	ound or water surface / m (time: 90584; latitude: 481; longitude: 586) e: 90096; latitude: 481; longitude: 586) e: 90096; latitude: 481; longitude: 586) arface / unknown (time: 90584; latitude: 481; longitude: 586) cime: 90584; latitude: 481; longitude: 586)
In [14]:	hsig=cubes[0]	
In [15]:	<pre>slice=hsig.extract(iris.Constraint(time=tval(hsig,'1989-05-0</pre>	07 21:00'), ▲ C scitools.org.uk/iris/ Inbox (→ Bank of Americ C Enphase Energy M Gmail 2 Calendar → C Other
In [16]:	<pre># make the plot figure(figsize=(10,10)) qplt.contourf(slice,100);</pre>	Iris Artes
	Significant height of combined wind waves and swell @ ground or wat	HomeDownloadDocumentationCommunityGovernanceCodeScitools
		A Python library for Meteorology and Climatology
		The Iris library implements a data model to create a data abstraction layer which isolates analysis and visualisation code from data format specifics. The data model we have chosen is the CF Data Model. The implementation of this model we have called an Iris Cube.
		Iris currently supports read/write access to a range of data formats, including (CF-)netCDF, GRIB, and PP; fundamental data manipulation operations, such as arithmetic, interpolation, and statistics; and a range of integrated plotting options.
		Iris is published under an <u>LGPLv3</u> licence.
	1 Contraction of the	© British Crown Copyright 2012, Met Office

ESPreSSO model (Rutgers)

In [9]: model='MARACOOS/ESPRESSO'

url='http://tds.marine.rutgers.edu/thredds/dodsC/roms/espresso/2013_da/his_Best/ESPRESSO_Real-Time_v2_History_Best_Available_best.ncd'
var='sea_water_potential_temperature'
lev=-1

slice=var_lev_date(url=url,var=var, mytime=mytime, lev=lev)
myplot(slice,model=model)

slice retrieved in 1.875781 seconds

Global RTOFS (NOAA)

In [13]: model='Global RTOFS/NCEP'

url='http://ecowatch.ncddc.noaa.gov/thredds/dodsC/hycom/hycom_reg1_agg/HYCOM_Region_1_Aggregation_best.ncd'
var='sea_water_temperature'
lev=1
subsample=1
slice=var_lev_date(url=url,var=var, mytime=mytime, lev=lev, subsample=subsample)
myplot(slice,model=model)

slice retrieved in 1.225454 seconds

/opt/anaconda/envs/np18py27-1.9/lib/python2.7/site-packages/iris/fileformats/_pyke_rules/compiled_krb/fc_rules_cf_fc.py:1196: UserWarning: Ignoring netCl
iable 'salinity' invalid units 'psu'
warnings.warn(msg.format(msg name, msg units))

Global BTOFS/NCEP: Water Temperature: 2014-08-28 12:00:00

IOOS Models Notebook on Wakari

 Install Sun/Oracle Java (10 min)
 Install/configure Tomcat (15 min)
 Install/configure the Thredds Data Server (15 min)
 Put NetCDF (or HDF4, Grib1, Grib2, HDF5 files) in a directory (5 min)
 Add NcML (XML) files for CF compliance and aggregation (15 min)

Adding data to THREDDS

rsignell@gam:/usgs/data0/bbleh/tidal\$ Is *wide*

his_bbleh_wide_0048.nc his_bbleh_wide_0100.nc his_bbleh_wide_0152.nc his_bbleh_wide_0049.nc his_bbleh_wide_0101.nc his_bbleh_wide_0153.nc his_bbleh_wide_0050.nc his_bbleh_wide_0102.nc his_bbleh_wide_0154.nc his_bbleh_wide_0051.nc his_bbleh_wide_0103.nc wide.ncml

\$more wide.ncml

<netcdf xmIns="http://www.unidata.ucar.edu/namespaces/netcdf/ncmI-2.2"> <aggregation dimName="ocean_time" type="joinExisting"> <scan location="." regExp=".*wide.*_[0-9]{4}\.nc\$"/> </aggregation> </netcdf>

Catalog http://geoport.whoi.edu/thredds/catalog/usgs/data0/bbleh/tidal/catalog.html

Dataset: tidal/wide.ncml

- Data size: 218.0 bytes
- ID: usgs/data0/bbleh/tidal/wide.ncml

Access:

- 1. OPENDAP: /thredds/dodsC/usgs/data0/bbleh/tidal/wide.ncml
- 2. HTTPServer: /thredds/fileServer/usgs/data0/bbleh/tidal/wide.ncml
- 3. NetcdfSubset: /thredds/ncss/grid/usgs/data0/bbleh/tidal/wide.ncml
- 4. ISO: /thredds/iso/usgs/data0/bbleh/tidal/wide.ncml
- 5. NCML: /thredds/ncml/usgs/data0/bbleh/tidal/wide.ncml
- 6. UDDC: /thredds/uddc/usgs/data0/bbleh/tidal/wide.ncml
- 7. WMS: /thredds/wms/usgs/data0/bbleh/tidal/wide.ncml

Dates:

• 2014-06-03T12:44:05Z (modified)

Viewers:

- Godiva2 (browser-based)
- <u>NetCDF-Java ToolsUI (webstart)</u>

Browsing WMS with Godiva2

WHCMSC Sediment Transport Group BBLEH ADCIRC tidal forcing wet/dry mask on V-points vertically integrated v-momentum component bathymetry at RHO-points Coriolis parameter at RHO-points curvilinear coordinate metric in XI curvilinear coordinate metric in ETA angle between XI-axis and EAST mask on RHO-points wet/dry mask on RHO-points -free-surface wet/dry mask on U-points vertically integrated u-momentum component mask on psi-points mask on V-points mask on U-points

Refresh

Auto-zoom on select

User quide

Searching for Data

GI-CAT catalog broker service architecture

IOOS System Test

IOOS System Test: <u>Extreme Events Theme</u>: Inundation

Compare modeled water levels with observations for a specified bounding box and time period using IOOS recommended service standards for catalog search (CSW) and data retrieval (OPeNDAP & SOS).

- · Query CSW to find datasets that match criteria
- · Extract OPeNDAP data endpoints from model datasets and SOS endpoints from observational datasets
- OPeNDAP model datasets will be granules
- SOS endpoints may be datasets (from ncSOS) or collections of datasets (from NDBC, CO-OPS SOS servers)
- · Filter SOS services to obtain datasets
- Extract data from SOS datasets
- · Extract data from model datasets at locations of observations
- · Compare time series data on same vertical datum

Specify a time range and bounding box of interest:

```
In [2]: # specific specific times (UTC) ...
```

```
# hurricane sandy
jd_start = dt.datetime(2012,10,26)
jd_stop = dt.datetime(2012,11,2)
```

```
# 2014 feb 10-15 storm
jd_start = dt.datetime(2014,2,10)
jd_stop = dt.datetime(2014,2,15)
```

Project Lead: Derrick Snowden Notebooks: Kyle Wilcox, Andy Bird, Bob Fratantonio, Kelly Knee, Will Koeppen, Hannah Dean https://github.com/ioos/system-test

Automated model comparison

SECOORA Model Assessment

inline_map(m)

Nbviewer link

C A Diviewer.ipython.org/github/ioos/secoora/blob/master/notebooks/inundation/00-generate_page_html.ipynb
 Apps M Gmail - Inbox (... M Bank of Americ... C Enphase Energy... C Alendar WHSC Intranet R Mich Signell's W... Bank of Americ...

with open(fname, 'w') as f: f.writelines(table)

Project Lead: Vembu Subramanian Notebook: Filipe Fernandes URL: https://github.com/ioos/secoora

Back to top

to_html(bias.T)

Out[21]:		COAWST_4	ESPRESSO	ESTOFS	нусом	SABGOM
	Duck, NC			0.05		0.43
	Oregon Inlet Marina, NC	-0.07	0.21	0.00	0.45	
	Wrightsville Beach, NC	-0.03		0.07	0.32	0.45
	Springmaid Pier, SC	-0.04		0.08		0.45
	Oyster Landing (N Inlet Estuary), SC			0.18		
	Fort Pulaski, GA			0.13		
	Fernandina Beach, FL			0.04		
	Mayport (Bar Pilots Dock), FL			0.01		
	Trident Pier, FL			-0.13		
	Lake Worth Pier, FL	-0.30		-0.11	0.07	
	Virginia Key, FL			-0.06		0.25
	Vaca Key, FL			-0.06		
	Key West, FL	-0.28		-0.08		0.14
	Naples, FL			-0.03		
	Port Manatee, FL			0.02		
	Clearwater Beach, FL			0.07		
	Cedar Key, FL	-0.10		0.09		0.18
	Apalachicola, FL	-0.04		0.15		
	Panama City, FL	-0.02				
	Pensacola, FL	0.04				

Python & Matlab notebook

Unidata Challenges

- Community THREDDS Data Servers robustness
- Support as popularity increases
- UGRID incorporated into Unidata NetCDF-Java
- Aggregation of large collections of NetCDF files
- Met/Ocean tools developed for Python on top of CF/Ugrid conventions (Iris, libCF)
- IDV-like client built on top of Python tools
- Participation in standards (e.g. OGC)
- Managing community development

Community Development

Community Development

Why do I promote Unidata technologies?

- Powerful
- Flexible
- Easy to install
- Free
- Supported
- Driven by community of users

Summary (1 of 2)

- Common data models for "feature types" (structured and unstructured grids, time series, profiles, swaths) (Unidata CDM)
- Standard web services for delivering these data and metadata (OGC, Unidata)
- Tools to access and process these services in common analysis environments: R, Matlab, Python, ArcGIS, JavaScript

Summary (2 of 2)

- It's easy (1 hour) to deploy free, supported systems that allow for standards-based delivery of aggregated data from native model grids that put little effort on the data provider
- What do you get?
 - Lots of choices for data access (Browser, Matlab, Python, Excel, IDV, R, IDL)
 - More usage of model results by more people
 - Faster feedback to modelers, leading to improved models
 - Shared code base in the community
 - Increased community support for standards-based access
 - Less time wasted messing with data, more time spent on ecosystem based management
- What should you do? Encourage providers to use these standards, and develop tools that use standardized access

More at: Github.com/rsignell-usgs

← → C ↑ GitHub, Inc. [US] https://gi	thub.com/rsignell-usgs			e	x☆ 🖬 脑 =
🗰 Apps 🛛 🐕 Gmail - Inbox (🛛 🗢 Bank of Ame	eric 🔁 Enphase Energy 🗾 Ca	lendar 🛛 🔤 WHS	SC Intranet 🛛 🕒 Rich Signell's W	/ » 🕻	Other bookmarks
Search GitHub	Explore Gist	Blog Help	👿 rsignell-usgs	+- 🗗 🌣 I	÷ ^
	← Contributions ↓ Repositories	ີລ Public activity		🖍 Edit profile	
A A A A A A A A A A A A A A A A A A A	Popular repositories		Repositories contributed to		
	U dap2arc Python tools for bridging the gap betwe	3 ★	Ugrid-conventi /ugrid-conventi Unstructured Grid Metadata Conven	e 10 ★	
	L notebook	2 ★	L ioos/comt_catalog THREDDS catalogs for comt_catalog	1 🚖	
	air-sea air-sea toolbox for matlab	1 ★	ioos/system-test IOOS DMAC System Integration Test	2 🚖	
Rich Signell rsignell-usgs	V pygridgen pygridgen	1 ★	ioos/conda-recipes conda-recipes for IOOS packages	3 🚖	
🛱 USGS	blog my blog	1★	Lioos/comt IOOS Coastal and Ocean Modeling T	estbed 1 🚖	
Voods Hole, MA				0	
rsignell@usgs.gov ☉ Joined on Jun 20, 2012	Contributions			Ê	
	Sep Oct Nov Dec	Jan Feb	Mar Apr May Jun	Jul Aug	
29 2 8 Followers Starred Following					
Organizations	Summary of Pull Requests, issues opened, and	commits. Learn more.	L	ess More	
NEALOOS 	Year of contributions 725 total Aug 27 2013 - Aug 27 2014	Longest 10 d March 10 -	streak Curre ays 30 March 19 August 2	ent streak days 5 - August 27	