Unidata Seminar Monday 22 January 2006

Grid-BGC: A Grid Enabled Carbon Cycle Modeling Environment

Jason Cope and Matthew Woitaszek University of Colorado, Boulder <u>Jason.Cope@colorado.edu</u> <u>Matthew.Woitaszek@colorado.edu</u>

- Scientific workflows are becoming too complicated for manual (or semi-manual) implementation.
- ❑ Not reasonable to expect a scientist to routinely:
 - Design simulation solutions by chaining together application software packages
 - Manage the data lifecycle (check out, analysis, publishing, and check in)
 - Do this in an evolving computational and information environment
- NCAR must provide the software infrastructure to allow scientists to seamlessly (and painlessly) implement workflows

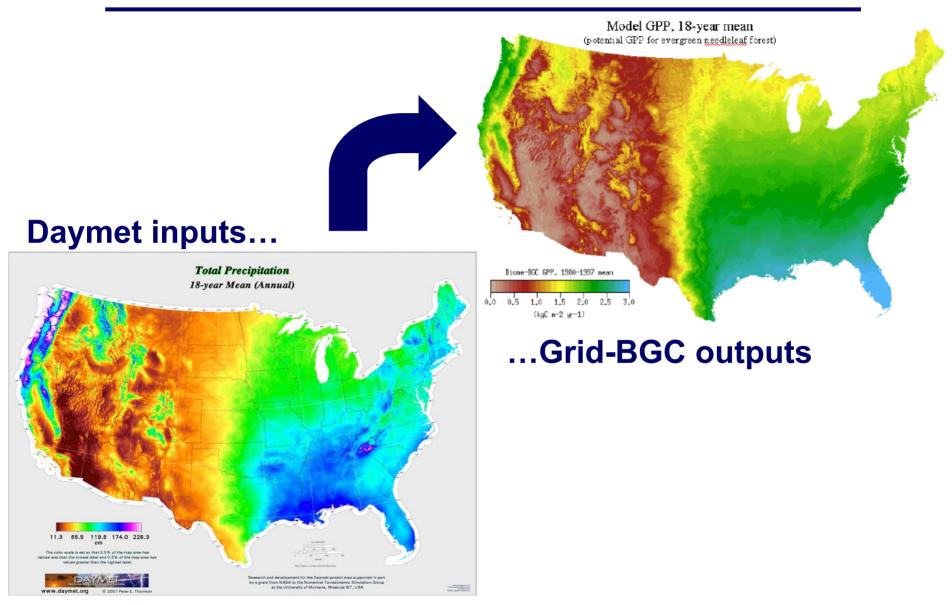
Motivation: Robust Modeling Environments

- Our goal is to develop a simple, production quality modeling environment for NCAR and the geoscience community that insulates scientists from the technical details of the execution environment
 - Cyberinfrastructure
 - System and software integration
 - Data archiving
- Grid-BGC is an example of such an environment and is the first of these environments developed for NCAR
 - Learning as we develop and deploy
 - Tasked by the geoscience community, but developed services are applicable to other collaborative research projects

Outline

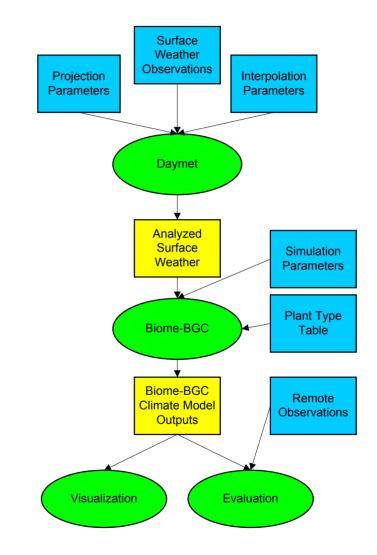
Introduction

- Carbon Cycle Modeling
- Service Oriented Architecture for the Earth Sciences
- Grid-BGC System Architecture
- □ Re-tasking the services for other Earth Science applications
- Future Work


Introduction: Participants

- This is a collaborative project between the National Center for Atmospheric Research (NCAR) and the University of Colorado at Boulder (CU)
- NASA has provided funding for three years via the Advanced Information Systems Technology (AIST) program

Researchers:


- Peter Thornton (PI), NCAR
- Henry Tufo (co-PI), CU
- Luca Cinquini, NCAR
- Jason Cope, CU
- Craig Hartsough, NCAR
- Rich Loft, NCAR
- Sean McCreary, CU
- Don Middleton, NCAR
- □ Nate Wilhelmi, NCAR
- Matthew Woitaszek, CU

Carbon Cycle Modeling: Workflow

Carbon Cycle Modeling: Workflow

- Daymet model interpolates a high resolution grid of weather observations for a region
- Biome BGC model calculates carbon cycle parameters at each grid point
- Models originally intended for analysis of small geographic regions.
- Analysis of larger regions is accomplished by simulating its composite regions

Carbon Cycle Modeling: Grid-BGC Motivation

Goal: Create an easy to use computational environment for scientists running large scale carbon cycle simulations.

- Requires managing multiple simultaneously executing workflows
 - Task creation
 - Execution management
 - Data management
- Distributed resource access across multiple organizations
 - Data archive and front-end portal are located at NCAR
 - Execution resources are located at CU and possibly other sites
- Reuse of software infrastructure
 - Extending the Grid-BGC workflow
 - Enabling other NCAR scientific applications and workflows

Service Oriented Architecture for the Earth Sciences: Desired Service Overview

- User interface services
 - Portal
 - GUI
 - Command line client
- Data services
 - Mass storage service
 - File transfer service
 - Data publishing service
- Execution services
 - Model execution service
 - Workflow control service
 - Resource allocation service
- Metadata services
 - Registry / Index Service
 - Resource brokerage service

System goals

- Easy to use
- Efficient and productive science

Development summary

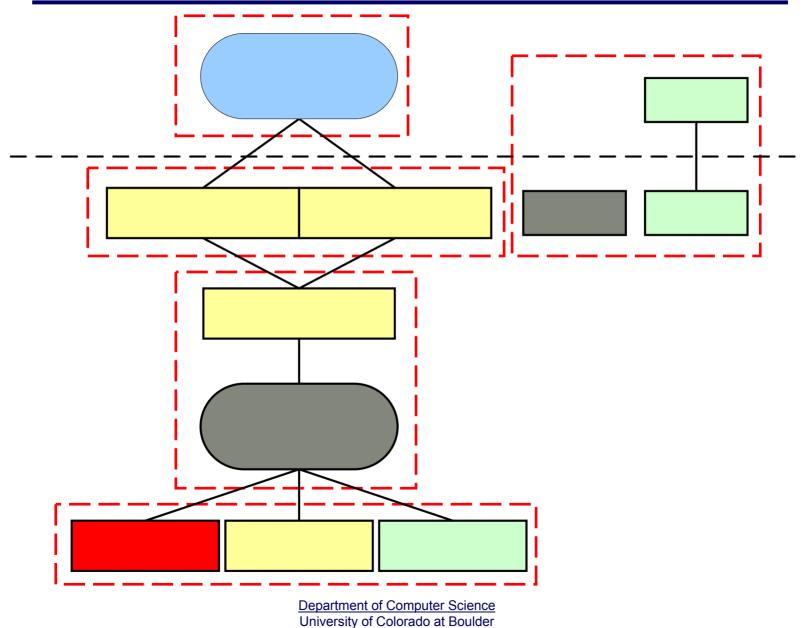
- Prototype developed with GT 3.2
- Current system redeveloped with GT4
- Integrates resources from NCAR and CU

Architecture Implementation

- Production system is not a pure service oriented architecture
- □ Research and development system is a service oriented architecture

Service Oriented Architecture for the Earth Sciences: Implemented Services

- User interface services
 - Portal
 - GUI
 - Command line client
- Data services
 - Mass storage service
 - File transfer service
 - Data publishing service
- Execution services
 - Model execution service
 - Workflow control service
 - Resource allocation service
- Metadata services
 - Registry / Index Service
 - Resource brokerage service


Service Oriented Architecture for the Earth Sciences: Implemented Services

- User interface services
 - Portal
 - GUI
 - Command line client
- Data services
 - Mass storage service
 - □ File transfer service
 - Data publishing service
- Execution services
 - Model execution service
 - Workflow control service
 - Resource allocation service

Metadata services

- Registry / Index Service
- Resource brokerage service

Grid-BGC: System Architecture

Grid-BGC Portal

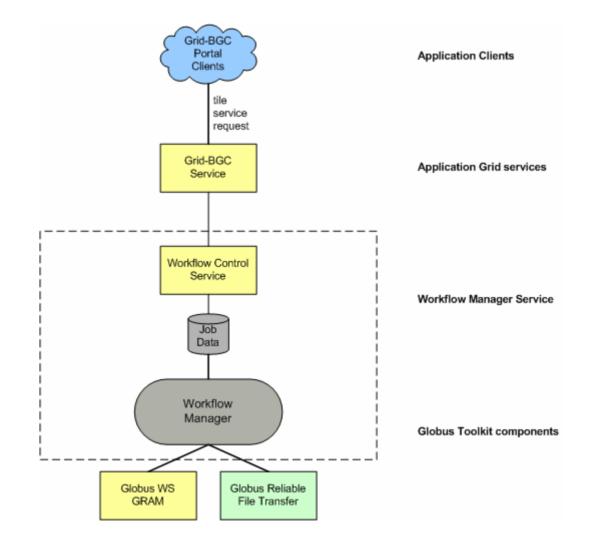
GridBGC Portal

	MY WORKSF	ACE DAYMET	BIOME BGC	VISUALIZATION	ABOUT MODELS CONTACT ADMIN
Daymet Projects Daymet Projects Active Simulations Daymet Visualizations Daymet Objects Surface Observations Projections Site Data (Grid) Simulation Parameters Simulation Output	MY WORKSP Create New Daymet Paramet Name: Description: Start Year: End Year: End Year: Maximum Missing Data Criteria [Days / Year]:		BIOME BGC		
	Initial Search Radius [km]: Average Number of Stations, Temperature: Average Number of Stations, Preciptation:	150.0 25.0 15.0			
	Radiation Timestep [seconds]: Options: Snowpack correction	0.0			
	Copyright National Cente		esearch 2004	All Pights Pasarvad	

- □ Web interface to Grid-BGC
- □ JSP / Tomcat implementation using CoG Kit
- Composed of logical services

- Execution service contains all functionality needed to run a model and is aware only of those models
- Provides interface to request and initialize a model run
 - Creates directory structure
 - Creates model initialization files
 - Registers file transfers and executables with the workflow manager
- Provides interfaces to query, terminate, and cleanup requested model runs

Workflow Control Service and Workflow Manager

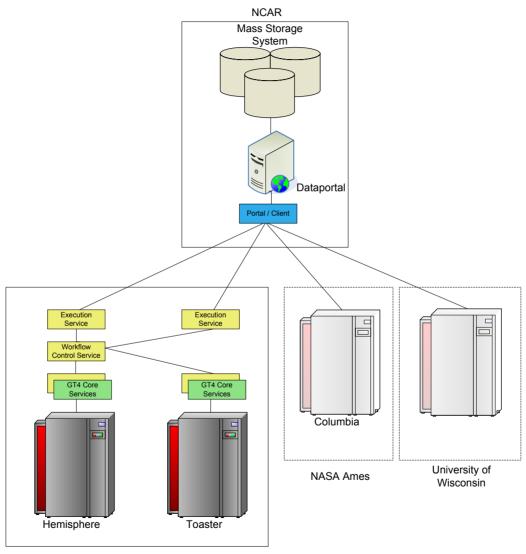

Workflow Control Service

- Provides functions to register workflow tasks, model executions, and file transfers
- Execution service uses the workflow control service functions to register its tasks
- Workflow control service stores the workflow metadata in a persistent database

Workflow Manager

- Periodically queries the workflow metadata database for new tasks to execute
- Delegates file transfers to the Reliable File Transfer service (RFT) and job executions to the Grid Resource and Allocation Management Service (GRAM)

Example Grid-BGC Workflow



Operational Experience

User Interface has been externally beta tested

- Beta testers from
 - University of Wisconsin
 - Utah State University
 - WSL Switzerland
- Feedback helped improve users interactions with the portal
- Grid computing and modeling environment beta tested internally
 Short term productivity gains have been realized using this system

Current Grid Topology

University of Colorado, Boulder

> Department of Computer Science University of Colorado at Boulder

Grid Enabling CAM and POP

Community Atmosphere Model (CAM)

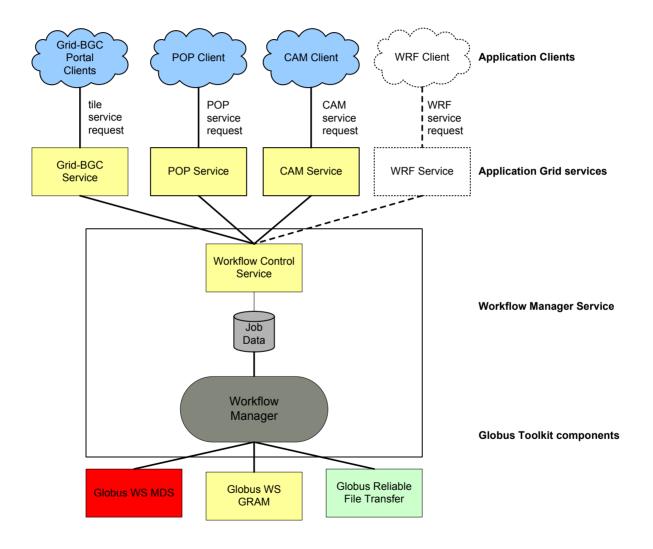
- Developed by NCAR
- Atmospheric component of NCAR's Community Climate System Model (CCSM)
- Parallel Ocean Program (POP)
 - Developed by the DOE at the Los Alamos National Laboratory
 - Ocean component of CCSM

Grid Enabling CAM and POP

- Re-tasked the grid service and workflow subsystem to run CAM and POP
- New components
 - Execution services
 - Client interfaces for accessing the services
- Reused components
 - Workflow subsystem and service
 - Service registry
 - Service communication package

Future Work: Expansion of the Grid-BGC Environment

Integrate new computational resources


- Integrate NASA's Columbia Supercomputer into the Grid-BGC environment
- Integrate resources provided by the system's users (University of Wisconsin, ...)

TeraGrid

- Continue to break out the desired services from current system components
- Continue to evolve system architecture into a service oriented architecture (SOA)

Visualization

Future Work: Grid Enabling More Earth Science Applications

Grid-BGC: A Grid Enabled Carbon Cycle Modeling Environment

This research was supported in part by the National Aeronautics and Space Administration (NASA) under AIST Grant AIST-02-0036, the National Science Foundation (NSF) under ARI Grant #CDA-9601817, and NSF sponsorship of the National Center for Atmospheric Research.

> Questions? Ideas? Comments? Suggestions? http://www.gridbgc.ucar.edu

Presenter's email: Jason.Cope@colorado.edu

