National Mosaic and Quantitative Precipitation Estimation Project (NMQ)

Ken Howard, Dr. Jian Zhang, and Steve Vasiloff
National Severe Storms Laboratory
Strategic Partnerships

Federal Aviation Administration
Convective Weather PDT

Chuck Dempsey, Jason Wilhite and Dr. Robert Maddox
SRP, Salt River Project, Tempe, AZ, USA

Dr. Paul Chiou, Dr. Chia Rong Chen, and Dr. Pao-Liang Chang
Central Weather Bureau, Taipei, Taiwan

Weather Decision Technologies, Norman, Oklahoma, USA
Scientific Collaborators

Mike Smith, George Smith, Feng Ding, Chandra Kondragunta, Jon Roe, and Gary Carter
NWS, Office of Hydrological Development

Dr. Marty Ralph and Dr. Dave Kingsmill
NOAA, Environmental Technology Laboratory

Andy Edman and Kevin Warner
NWS, Western Region Headquarters

Arthur Henkel
California-Nevada RFC

Dr. Thomas Graziano and Mary Mullusky
NWS Office of Climate, Water, and Weather Services

Steve Hunter
USGS, Bureau of Reclamation

Dr. Robert Kuligowski
NOAA National Environmental Satellite, Data and Information Service

Dr. Curtis Marshall
NOAA National Center for Environmental Prediction
What is NMQ?

- The National Mosaic and QPE (NMQ) project is a collaborative initiative between NSSL, FAA, NCEP and the NWS/Office of Hydrologic Development (OHD) and the NWS/Office of Climate, Water, and Weather Services (OCWWS) to address (among others) the pressing need for
 - high-resolution national 3-D radar mosaics for atmospheric data assimilation and severe weather identification and prediction
 - multi sensor QPE and short term QPF for all seasons, regions, and terrains in support of operational hydrometeorological products and distributed hydro modeling
 - facilitating efficient and timely research to operations infusion of hydro meteorological applications and products
Objectives of NMQ

- Maintain a scientifically sound, physically realistic real-time system to develop and test techniques and methodologies for physically realistic high-resolution rendering of hydrometeorological and meteorological processes.
- Create the infrastructure for community-wide research and development (R&D) of hydrometeorological applications in support of monitoring and prediction of freshwater resources in the U.S. across a wide range of space-time scales.
- Through the NMQ infrastructure, facilitate community-wide collaborative R&D and research-to-operations (RTO) of new applications, techniques and approaches to precipitation estimation (QPE), short-range precipitation forecasting (QPF), and severe weather monitoring and prediction.
- Establish a ‘real time’ CONUS 3-D radar data base for model assimilation.
NMQ_XRT
CONUS
3-D Mosaic

Current
124+ Radars
1 km x 1 km x 500m
21 vertical levels
5 min updates cycle

Fall 2005
135+ Radars
1 km x 1 km x 200m
31 vertical levels
<5 min update cycle

Summer 2006
155+ Radars
250x250 meter km x
131 vertical levels
<5 min update cycle
QuickTime™ and a Video decompressor are needed to see this picture.
NMQ Vertical Levels

31 levels

height (km AMSL)

level

0 5 10 15 20 25 30 35
Cross Sections from NMQ 3-D Mosaic

Dallas Hail Storm, 5/5/1995
Vertical Cross Section Loop (W-E)
Horizontal Cross Section Loop
Reflectivity QC

- Noise filter
 - Remove speckles

- Sunbeam filter
 - Remove sun strobe echoes

- Vertical reflectivity gradient check
 - Remove AP and clear air echoes

- Satellite mask
 - Remove AP, deep clear air echoes, and chaff
Noise Filter
Sunbeam Filter
AP and Clear Air (biological)
Bright-Band Identification (BBID)

(Gourley and Calvert, 2003)

- BB info will impact choice of objective analysis methods
- BBID steps:
 - 3-D Reflectivity Field
 - Find Layer of Higher Reflectivity
 - Vertical Reflectivity Gradient
 - Spatial/Temporal Continuity

![Bright Band (Melting Layer) Schematic](image-url)
3-D Spherical to Cartesian Transformation

(Zhang et al. 2003)

No BB:
Vertical linear interpolation

BB exists:
Vertical and horizontal linear interpolation
Convective Case 1: RHI, 263°
Stratiform Case 2: RHI, 0°
Stratiform Case
CAPPI at 2.3km

Raw
Interpolated
Distance Weighting

- CREF_KLOT
- Mosaic CREF

[Graph showing exponential weight function with range and weight axes, and distance weighting radar maps.]

\[w = \exp\left(-\frac{d^2}{R^2}\right), \quad R = 50\text{km} \]
NMQ 2 D Products

(QC’d, UnQc’d, VPR corrected)

- CREF
- HREF
- VIL
- HIS
- Echo top
- Max hght
NMQ 3D Products

(QC’d, UnQc’d, VPR corrected)

- BREF (31 levels)
- 3D CREF
- Multi Sensor QPE
Radar Only PCP (Dec. 11 - Jan. 1)
MS PCP (Dec. 11 - Jan. 1)
Snow/Rain Mix MS PCP (Dec. 11 - Jan. 1)
In Closing

• NSSL has assembled the hardware, communication, and software infrastructure for the ‘real time’ creation and dissemination of high resolution 3D radar reflectivity fields and products.

• The NMQ project provides the foundation for the research and development towards high-resolution multisensor quantitative precipitation estimation (QPE) for all seasons, regions and terrains in support of hydrometeorological and hydrologic data assimilation and distributed hydro modeling.

• The NMQ system is being developed as a NATIONAL community test bed for R&D and RTO of QPE, short-range QPF and severe weather science/applications. The NMQ system and products could potentially ‘feed’ LEADS and other Unidata community based applications.

• NSSL seeks a collaboration with Unidata and Unidata partners towards the utilization and enhancement of the NMQ system as community educational and research/development system including the display and distribution of NMQ products.
Thank you!

QuickTime™ and a Video decompressor are needed to see this picture.