

(N)AWIPS Evolution Service Enhancements – Center Challenges

16 January 2008

Jason Tuell Office of Science and Technology

Steve Schotz NCO

- Provide an understanding of the case for change for NAWIPS
- Provide an understanding of the overall AWIPS Evolution Project
- Provide an understanding of the NAWIPS Migration task
- Provide an understanding of the work load for <u>all</u> NCEP Centers

AWIPS Evolution NWS Enterprise Improvements

- More responsive to partner needs reduce development time of new products by 50%
- Direct and integrated visual collaboration with all levels of NWS operations - National Centers, RFCs, WFOs, WSOs
- Streamlined generation of products in industry standard formats
 CAP, GIS, etc.
- Expanded access to data for NWS and external partners
 - SBN enhancements, smart push-smart pull
- Improved and integrated incident support for Emergency Managers and DHS
- Better weather support for the FAA at CWSUs through enterprise level integration

NAWIPS Migration Case for change

- NAWIPS built on mid 1990's architecture
 - Difficult taking advantage of new trends in the software industry
 - Need to deliver products and services in industry and customer centric formats
- Current AWIPS and NAWIPS architectures inhibit collaboration among Centers, WFOs and RFCs
 - Operations integrated at the lowest common denominator
 - Text and fixed graphics products
 - Dependent on conference calls in some cases to exchange information
- Budget constraints
 - Duplicative development and introduction of new science
 - Cost of O&M, new science development increasing

NAWIPS Migration Case for change

- Free operations from technology constraints
 - Seamless, flexible and extensible weather enterprise that integrates all levels of NWS operations
 - Integrated service delivery via the migration of AWIPS and NAWIPS into a common Service Oriented Architecture
 - Integrated visual collaboration throughout the organization
- Put new science into operations faster more accurate warnings and forecasts
 - Make same science tools available to all levels of NWS Operations via common algorithm library and tool sets
 - Enable collaborative development between local, national and outside developers
 - Open source closed community open up development to local apps developers and those outside traditional development community, e.g. NASA, academia
- Opportunity to leverage NWS AWIPS hardware and centralized support
- No more VTECs

AWIPS Evolution Overview

AWIPS Evolution Roadmap

AWIPS Evolution Governance Model

- What is it?
 - Governance model controls the development, test, integration, configuration management, deployment and support of the new system
 -- both hardware and software
- Why?
 - AWIPS II offers new levels of flexibility and extensibility
 - New rules needed to exploit system capabilities, define limits
 - Tension between unlimited modifications and ability to support the baseline system
- Sample issues for consideration
 - Monolithic configurations no longer required -- how do we manage site specific configurations?
 - Plug ins can be down loaded and installed on demand
 - Scripting that modifies AWIPS menus, functions
- Flexible Governance Model enhances open source implementation
 - Open source closed community model
 - Path to baseline defined for local and externally developed applications
 - Definition of "sand box" for development and execution of local applications without impacting operations

AWIPS II Infrastructure What gets us excited...

- Dynamic load balancing
 - Failover handled automatically!!!
 - Takes full advantage of all available hardware
- Significant performance improvements
 - Borrows techniques from video games mathematically intensive calculations handed off to the graphics card

- Google Earth-like disclosure of imagery, grids and observations
 - Allows zooming in of satellite imagery with full resolution
- Integrated drawing and graphical collaboration
 - Tools built into the infrastructure, implemented in 2011
- Improved reliability
 - LESS CODE Potential order of magnitude reduction in amount of software
 - Reduced code complexity

NAWIPS Migration

NAWIPS Roadmap

NAWIPS Migration Responsibilities

- Planning
 - NCO and OST, Center participation requested
 - Some Raytheon support for architectural discussions
- Application Migration
 - NCO migrates NAWIPS with Raytheon support
 - Testing
 - Functional and system testing in partnership with Centers
 - Three major test activities
 - Incremental ("alpha") field testing of migrated components
 - Field verification and validation test to break
 - OT&E
- Training
 - Developer training
 - System admin training
- Government (NCO) will maintain migrated NAWIPS applications in AWIPS II era
 - NCO develops new application level functionality
 - Raytheon maintains infrastructure and architecture

NAWIPS Migration Re-Architecture Approach

- Preserve existing NAWIPS functionality
- Minimize changes to user interfaces "Grey Box" conversion
 - Minimizes user training of forecasters and administrators
- Leverage use of AWIPS II services, functionality and development tools to optimize migration
 - AWIPS II uses open source projects No proprietary code
 - AWIPS II is platform independent
- Migrate NAWIPS functionality incrementally to AWIPS II to reduce risk
 - Multiple deliveries planned for FY09 and FY10 for Center testing and evaluation purposes

NAWIPS Migration FY08 Activities

- Goals
 - Gain expertise in AWIPS II technologies and architecture
 - Ensure that AWIPS II architecture can support NCEP requirements
 - Develop NAWIPS migration plan for FY09/10 implementation
 - Utilize Project Management approach
- Activities
 - Take training: SOA, Java, RTS developer
 - Participate on AWIPS II teams : IV&V, IWT testing
 - Conduct NCO-OST monthly coordination meetings to support migration planning
 - Participate in RTS TIMs, including NCEP-specific issues
 - Conduct NAWIPS vs. AWIPS II Gap Analyses
 - Software, hardware, network and data flow
 - Prototype in AWIPS II ADE
 - GUIs, decoders, displays, diagnostics

- NAWIPS moratorium required during migration period
 - Migration complexity enhancing existing NAWIPS while migrating not practical
 - Resource constraints
- Routine NAWIPS maintenance only
 - Bug fixes only
 - Table, map updates as necessary

- GEMPAK batch processing
 - How do we support batch processing with an interactive system?
 - How do we support batch processing in a super computer environment?
- GEMPAK scripting
 - Will GEMPAK scripts now be JAVAScript?
 - How does this drive training and local application development?
 - What is the impact on transition?
- Conversion of archived data sets to new data standards
- University and Unidata support

- Performance in AWIPS II architecture
 - Handling large global data sets
 - Some testing will be done as part of IVV during the AWIPS II migration
 - Handling number of concurrent users
- Use of AWIPS II vs. NCEP hardware and network
 infrastructure
 - AWIPS II must support ingest of NCEP unique data sets
 - AWIPS II must scale to support NCEP processing requirements
 - Can we leverage off of AWIPS workstation hardware?
 - Evaluating gaps and deltas between AWIPS and NAWIPS current system implementations

- Organizational
 - Government executes the migration RTS supports AWIPS II Infrastructure
 - How do we get Raytheon to extend/add to ADE if NAWIPS unique infrastructure services are needed?
 - Matrix structure increases project complexity
 - Significant Center workload anticipated

- Training
 - Will training in NAWIPS be done NWSTD post migration?
 - Rationale: Same architecture, framework implies that training might be combined with AWIPS training.
 - Note: This is a conceptual change, dependent on requirements and funding
- Developer training
 - Should there be joint developer training for NAWIPS and AWIPS developers?
- Local apps
 - How will "local apps" for National Centers be handled?
- Governance
 - Insuring that the Governance model is flexible enough to cover the needs of National Centers
 - Release paradigm, requirements process, etc.

NAWIPS Migration Workload

NCO Migration Workload

- FY08
 - ~ 2 FTE (4 part-time individuals) for planning and coordination
 - Entire NAWIPS team obtaining SOA and Java training
- FY09 FY10
 - NAWIPS team ~ 17.5 FTEs (5.5 Feds and augmented contractor support - 12 contractors)

Local Application Migration Work Load

- Need to better understand issue
 - Survey coming to define magnitude
- Need assistance of Centers to better understand this problem
 - Number of GEMPAK scripts, enhancements and modifications
 - Not clear extent to which GEMPAK scripts might have to modified

NAWIPS Migration Training Needs

- Training development and delivery
 - Leverage NWSTD development of AWIPS II training
 - Remote training
- User training
 - Grey box conversion should minimize User Interface training
- Focal point training
 - Training on how to configure and tailor applications
 - GEMPAK scripts?
- Installation and site administration training
 - Installation <u>will</u> change; training required!
 - System administration will change, training required!
 - Different troubleshooting techniques
 - Will leverage and build upon the AWIPS II training

- Exploit AWIPS II training already in place
- Developer training
 - Developer workload highly variable depending on developer familiarity with languages and tools
 - 50-100 hours of pre-cursor distance learning based training
 - JAVA, JavaScript, Eclipse, Mule, Service Oriented architecture principles
 - ADE training -
 - >24-40 hours of distance learning based training per each task order
 - Assume 2-4 months becoming familiar and comfortable with working in the new environment

NAWIPS Migration Work Load Summary

- AWIPS Evolution and NAWIPS Migration requires significant work on the part of the Government
 - Government resources will be essential to the overall success of NAWIPS migration
 - Challenge in keeping resources available and focused on long term project
- Government participation critical to making Raytheon-Government partnership work

What do we need to do?

- Your help is needed
 - Secure National Center level focus on NAWIPS Migration
 - Need specific help
 - Focal points for planning
 - Attend monthly NAWIPS/OST planning mtgs
 - Test planning and test case development
 - Local application migration planning and execution
 - Prototype testing
 - Review and approve migration plan

NAWIPS Migration can only succeed with a partnership between NCO, Centers, OST and Raytheon

- AWIPS Evolution planned and funded
 - Migration to AWIPS II underway
 - AWIPS II delivered June 2009
 - Deployment complete FY10
- NAWIPS Migration an essential part of AWIPS Evolution
 - Migration preparation and planning underway
 - Migration FY09 and FY10
 - Deployment complete FY11
- AWIPS Evolution will improve NWS products and Services
- National Center focus and support of NAWIPS
 migration critical to its success

Back Up

Why Change?

- Case for change briefed to NWS Corporate Board Nov 2004
- AWIPS Present State Summary 2004-2007
 - System struggling to keep pace with the demands of new data and new science
 - System falling behind in meeting commitments for new products and services to the partners
 - Software architecture holding AWIPS back
- Corporate board direction to focus on addressing software shortcomings
 - AWIPS O&M re-compete activity shaped by plans developed as a result of Corporate Board direction
 - Raytheon software re-architecture being executed within current budget due to cost savings from O&M
 - Follow on enhancements being funded with projected budget increases in FY09-14

What is AWIPS Evolution?

- AWIPS Evolution
 - Overall project that delivers a modern, robust, flexible and extensible software infrastructure which is the foundation for future system enhancements
- Three major phases
 - AWIPS II Today's functionality in a new Service Oriented Architecture
 - AWIPS II Extended A seamless weather enterprise that spans NWS operations
 - Migration of NAWIPS into the AWIPS II SOA
 - Inclusion of Weather Service Offices, FAA (Center Weather Support Units) and Fire Weather via an integrated thin client
 - Community Hydrologic Prediction System (CHPS) Modern flood forecasting technology integrated into the new architecture
 - Integrated training and case studies
 - AWIPS II Enterprise Enhancements new enterprise level functionality that enhances operations
 - Improved and more robust data access to handle data from emerging technologies (e.g., NPOES, GOES-R, new models, etc.)
 - "Smart push-smart pull"
 - Katrina satellite WAN back up
 - NOAAPort/SBN bandwidth increases that support internal and external customers
 - Integrated visual collaboration at all levels of the NWS operations out to trusted partners (Emergency Managers)
 - Streamlined generation of products and services
 - Three-dimensional visualization to improve detection of severe weather

AWIPS Evolution Objectives

- Eliminate the technological constraints that get in the way of operations
 - Create a seamless, flexible and extensible weather enterprise that integrates all levels of NWS operations from National Centers to RFCs to WFOs to CWSUs and WSOs
 - Integrated service delivery via the integration of AWIPS and NAWIPS into a common SOA
- Enhance the data and tools used to improve services and service delivery
 - Smart push- smart pull and SBN enhancements that put more data in the hands of forecasters and external NOAAPort customers
 - Improved collaboration within the NWS and with trusted partners such as Emergency Managers and DHS
 - Stream-lined generation of products and services creating products that users need in formats (e.g., GIS) they can exploit
- Put new science into operations faster more accurate forecasts and warnings
 - Enable collaborative development
 - Open source closed community open up development to local apps developers and those outside traditional development community, e.g. NASA, academia

AWIPS II Testing

- Objective: Deliver a system that delivers today's functionality with no impact on operations
- Layered testing strategy
 - Different testing phases overlap functionality tested multiple times in different settings
 - Significant field participation in testing
- ADE usage
 - Not formal testing, but expect to get feedback as developers use the ADE
- Algorithm Verification & Validation
 - Assist algorithm choice
 - Verify port of algorithms
- Verification & Validation
 - Executed by dev orgs in controlled setting
 - Performance testing Evaluate system against known and developing benchmarks
 - Acceptance testing part of the task order acceptance process
- Field Evaluation
 - Side by side testing of new system by field personnel in a "lab" environment
 - Testing at limited number sites in manner that doesn't impact operations
- Operational Test & Evaluation (OT&E)
 - Formal testing of the entire system
 - Tests system interfaces, operations, support, training, etc.

AWIPS II

- Forecaster
 - Little to no impact anticipated
 - Look & Feel preserved
- ESA/ITO
 - New architecture drives changes to:
 - Release Installations (projected to be easier & shorter in duration)
 - System Maintenance
 - System Troubleshooting
- Application Focal Point
 - Definition of application changes under new architecture

Operational Impacts

- Application configuration likely to change
 - Do not know by how much at this time. Better idea around end of calendar year (2007)
- Local Application Developer
 - Local applications need to be migrated to new infrastructure
 - Migration path needs to be determined for each local app
 - New development accomplished within ADE
 - Will need to learn new concepts object oriented programming, SOA principles
 - Will need to learn new languages -- JAVA script and potentially JAVA --

AWIPS II Government Workload

- How many people support AWIPS Evolution today?
 - ~80 throughout NWS involved at least part time or participate in discussions
 - Number to grow with expansion of FY08 planning, testing and development activities
- Planning
 - NAWIPS migration
 - Thin client
 - Data delivery
 - Collaboration
- Development
 - Baseline migration (Raytheon)
 - Local Applications migration (Government)
- Testing (Mostly Government)
 - ADE evaluation
 - Verification & Validation
 - Field Evaluation
- Training

- Verification & Validation
 - ~10 FTEs over 50% time each six months
 - Workload will increase with each task order as functionality is added to the system
- Field Evaluation
 - ~1.5 FTEs to set up and maintain each test site
 - Three currently planned
 - Number of field personnel participating only limited by resources
- OT&E planning
 - 6 FTEs used 25% in initial planning
 - Use and test case development will require at least 5-8 FTEs full time over next two years
- OT&E execution
 - ~20-25 WFOs/RFCs/NCs to participate in OT&E
 - OT&E management and oversight ~10 FTEs