The netCDF-4 data model and format

Russ Rew, UCAR Unidata NetCDF Workshop 25 October 2012

NetCDF data models, formats, APIs

- Data models for scientific data and metadata
 - classic: simplest model -- dimensions, variables, attributes
 - enhanced: more powerful model -- adds groups, types, nesting
- File formats for portable data
 - Array-oriented scientific data and metadata
 - Formats: classic, 64-bit offset, netCDF-4, netCDF-4 classic model
 - Formats make data self-describing, portable, direct access, appendable, extensible, sharable, archivable
- Application programming interfaces (APIs)
 - C, Java, Fortran, C++
 - Python, Ruby, Perl, MATLAB, IDL, ... (3rd party APIs)

Together, the data models, file formats, and APIs support the creation, access, and sharing of scientific data

The netCDF "classic" data model

- A netCDF file has named variables, attributes, and dimensions.
- Variables are for data, attributes are for metadata (data about data)
- Dimensions are for specifying shapes of variables
- Attributes may apply to a whole file or to a single variable
- Variables may share dimensions, indicating a common grid.
- One dimension may be of unlimited length.
- Each variable or attribute has 1 of 6 types: char, byte, short, int, float, double

The netCDF classic data model, in UML

NetCDF Data has

Variables (eg temperature, pressure)

Attributes (eg units)

Dimensions (eg lat, lon, level, time)

Each variable has

Name, shape, type, attributes

N-dimensional array of values

Each attribute has

Name, type, value(s)

Each dimension has

Name, length

Variables *may share* dimensions

Represents shared coordinates, grids

Variable and attribute values are of type

Numeric: 8-bit byte, 16-bit short, 32-bit int, 32-

bit float, 64-bit double

Character: arrays of **char** for text

UML = Unified Modeling Language

The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named subgroups, user-defined types, variables, dimensions, and attributes. Variables also have attributes. Variables may share dimensions, indicating a common grid. One or more dimensions may be of unlimited length.

NetCDF classic data model

Strengths

- ✓ Data model simple to understand and explain
- ✓ Can be efficiently implemented
- ✓ Representation good for gridded multidimensional data
- ✓ Shared dimensions useful for coordinate systems
- ✓ Generic applications easy to develop

Limitations

- Small set of primitive types
- Data model is flat, limited to multidimensional arrays, (name, value) pairs
- Flat name space not ideal for organizing many data objects
- Lacks nested structures, variable-length types, enumerations

NetCDF enhanced data model

Strengths

- ✓ Simpler than HDF5, with similar representational power
- ✓ Adds shared dimensions to HDF5 data model
- ✓ Continues support for existing data, software, and conventions
- ✓ Adds real Strings and unsigned integer types
- ✓ Provides nested structures: hierarchical groups, recursive data types
- ✓ Independent features permit incremental adaptation, adoption

On the other hand ...

- More complex than classic data model
- More effort required to develop general tools and applications
- Adoption proceeding slowly
- Hence, no comprehensive experience-based best practices or conventions yet

NetCDF *classic formats*

Strengths

- ✓ Simple to understand and explain
- ✓ Supported by many applications
- ✓ Standard used in many archives, data projects
- ✓ Mature conventions and best practices have evolved

Limitations

- No support for efficient compression
- Only one growable dimension
- Schema changes can be costly
- Portable representation favors big-endian platforms

New NetCDF Binary Format

- Before the netCDF-4 project, there were two binary formats: classic and 64-bit offset
- NetCDF-4.0 introduced a new binary format: netCDF-4/HDF5
- It is an HDF5 file, with some additional metadata
- It is read by netCDF code just like any other netCDF file

NetCDF-4 formats

- Use HDF5 as a storage layer
- Provide performance advantages of HDF5
 - Compression
 - Chunking
 - Efficient schema changes
- Useful for very large or complex data
- Suitable for high-performance computing

NetCDF-4 classic-model format

netCDF-3

- Compatible with existing applications
- Simplest data model and API

netCDF-4 classic model

- Uses classic API for compatibility
- Uses netCDF-4/HDF5 storage for compression, chunking, performance
- To use, just recompile, relink

netCDF-4

- Not compatible with some existing applications
- Enhanced data model and API, more complex, powerful

To ensure future access to existing data archives, Unidata is committed to compatibility of:

- **Data access**: new versions of netCDF software will provide read and write access to previously stored netCDF data.
- **Programming interfaces**: C and Fortran programs using documented netCDF interfaces from previous versions will work without change with new versions of netCDF software.
- **Future versions**: Unidata will continue to support both data access compatibility and program compatibility in future netCDF releases.

NetCDF standards endorsements

- 2009-02: NASA Earth Science Data Systems (ESDS) Standards Process Group endorsed netCDF classic and 64-bit offset formats as appropriate for NASA Earth Science data.
- 2010-03: Integrated Ocean Observing System (IOOS) Data Management and Communications (DMAC) Subsystem endorsed netCDF with Climate and Forecast (CF) conventions as a preferred data format.
- 2010-09: Steering Committee of the US Federal Geographic Data Committee (FGDC) officially endorsed netCDF as a Common Encoding Standard.
- 2011-04: Open Geospatial Consortium (OGC) endorsed "OGC Network Common Data Form (NetCDF) Core Encoding Standard version 1.0" as an OGC standard.
- 2011-11: NASA ESDS Standards Process Group endorsed **NetCDF-4/HDF-5 File Format**, as a NASA Recommended Standard.
- 2012-10: the Open Geospatial Consortium (OGC) approved the NetCDF Enhanced
 Data Model Extension Encoding Standard, making netCDF-4 an OGC

