HE"
o
’AnetCDF

python

netcdf4-python: A
python interface to the
netcdf C library

Jeff Whitaker
NOAA Earth System Research Lab
jeffrey.s.whitaker@noaa.qov

Presented and slightly modified by Sean Arms
UCAR/Unidata
sarms@unidata.ucar.edu

What is Python?

* An interpreted, dynamic, all-purpose high-
level programming language.

 Can be used ..
— As a replacement for matlab, IDL for analysis.

— To build GUI and web apps.

— As a higher-level “glue” language to build
interfaces to Fortran/C code.

Why Python?

e |t's free!
e |t's fun! (easy to learn, “fits your brain”)

e Has great scientific library support (data
formats, algorithms, plotting, you name it)

* A general purpose language (what you learn is
transferable to other domains)

* Easy to interface fortran/C if you need speed
or want to leverage legacy code.

Python — useful links

* Open source libs
* Basic plotting: matplolib (gallery)
 Maps: basemap (gallery)
* Numerics: NumPy
* Advanced/Domain Specific Numerics: Scipy
* |/O: netcdf4-python, pupynere, pygrib, pydap
e Other goodies!

* You know all that C and FORTRAN you have...

* Python can leverage it! f2py, ctypes

* Must be able to compile the code...I’'m looking at you, crufty
FORTRAN 77

So...python...

It slices, it dices, it makes julienne fries!

Prerequistes

Python 2.5 or later (python 2.7 recommended)
Numpy array processing module from http://numpy.scipy.org.
netCDF/HDFS5 C libraries.

netcdf4-python from http://netcdf4-python.googlecode.com.

— PyNIO and Scientific.IO modules are similar, without advanced
netcdf-4 features.

Optional but recommended:
— Matplotlib (http://matplotlib.sf.net) for plotting.
— Scipy (http://scipy.org) for common algorithms.

Enthought Python distro includes numpy, scipy, matplotlib
and netcdf4-python (free for academic use only, others SS).

netCDF Dataset object

>>> import netCDF4 # import module

>>> nc = netCDF4.Dataset(‘test.nc’,'w’,format='NETCDF4’')
>>> print nc.file_ format

NETCDF4

>>> nc.close()

APl is similar to PyNIO or Scientific.lO.NetCDFFile.

* Dataset object contains dimensions, variables
and groups (stored as dictionary attributes).

* Top level group is the Dataset object itself.

Dimensions

>>> nc = netCDF4.Dataset(‘test.nc’,’a’) # re-open in ‘append’ mode
>>> lat dim = nc.createDimension(‘lat’,73)

>>> lon_dim = nc.createDimension(‘lon’,b144)

>>> time_dim = nc.createDimension(‘time’,None) # unlimited dim
>>> print nc.dimensions

OrderedDict ([('lat’', <netCDF4.Dimension object at 0x102711b50>),
('lon', <netCDF4.Dimension object at 0x102711b90>), ('time'’,
<netCDF4.Dimension object at 0x102711bd0>)])

>>> print len(lon_dim)

144

>>> print time_dim.isunlimited()
True

e Setting dimension size to 0 or None makes it unlimited.

e |ffile format="NETCDF4’, multiple dimensions can be
unlimited.

Variables

>>> import numpy as np # import numpy module

>>> mslp = nc.createVariable(‘mslp’,np.float32,
(‘time’,‘lat’,’lon’))

>>> mslp.standard name = ‘air pressure at sea level’

>>> print mslp.dimensions.keys(), mslp.shape, mslp.dtype
[‘time’,’'lat’,’lon’'] (0,73,144) float32

* Data type specified by numpy type (float, int, float32, int16 etc).
* |f file_format="NETCDF4’, multiple dimensions can be unlimited.

* netCDF attributes created by creating Variable instance
attributes.

* Variable compression and chunk sizes may be specified by
keywords in createVariable.

e Useful attributes include: shape, dimensions, dtype, ndim.

Writing data

>>> print data _arr.shape # 6 grids of pressure data
(6,73,144)

>>> mslp = data_arr # append along unlim dim

>>> print mslp.shape

(6,73,144)

>>> data_out = mslp[::2,lats>0,:] # every other time in North. Hem.
>>> print data_out.shape
(3,36,144)

* Just treat Variable object like a numpy array and
assign data it.

* Variables automatically grow along unlimited
dims.

* To retrieve data, just slice the Variable object.

Bells and whistles

Conversion of time values to dates.
Multi-file aggregation.

Compression.

Groups (think filesystem directories).
Advanced data types:

— Compound variables.

— Variable-length arrays/strings.

Dealing with time

>>> from netCDF4 import date2num, num2date

>>> from datetime import datetime

>>> time_units = ‘hours since 0001-01-01 00:00:00.0°

>>> d = datetime(2011,7,26,12); print date

2011-07-26 12:00:00

>>> print date2num(d,units=time_units,calendar=‘gregorian’)
17624292.0

>>> print num2date(t,units=time_ units,calendar=‘gregorian’)
2011-07-26 12:00:00

>>> print num2date(t,units=time_units,calendar=‘julian’)
2011-07-13 12:00:00

Dealing with time coords has always been a PITA.
date2num and num2date functions here to help.
Supports many different calendars.

Can handle arrays of date, time values.

Multi-file aggregation

>>> from netCDF4 import MFDataset
>>> nc = MFDataset (‘/datasets/wind _195*.nc’)

e Uses file globbing to patch together all the files
for the 1950’s. Appears as one big dataset.

* Limitations:
— Can only handle NETCDF3, NETCDF4 _CLASSIC files.
— Only can aggregate along left-most dimension.

— Slower than opening and reading files individually.

— netcdf-java provides more advanced aggregation
capabilities (via ncml).

Compression

>>> mslp = nc.createVariable(‘mslp’,np.float32,
(‘time’,’lat’,’lon’)) # no compression

>>> mslp = nc.createVariable(‘mslp’,np.float32,
(‘time’,‘lat’,’lon’),zlib=True) # ‘lossless’ zlib compression
>>> mslp = nc.createVariable(’‘mslp’,np.float32,
(‘time’,‘’lat’,’lon’), zlib=True,

least _signficant digit=1) # “lossy” zlib compression

e zlib=True turns on zlib compression (with shuffle
filter).

e |least_significant_digit=1 truncates the data after
the 15t decimal place. Can result in much smaller
files.

Recap

Python/numpy is a excellent matlab replacement.

netcdf4-python exposes almost all of the netcdf-4
C lib to python in a nice OO interface.

Would be great to incorporate some of the
features found in netcdf-java (such as
aggregation) in the future!

Downloads, docs, issue tracker
http://netcdf4-python.googlecode.com

Questions
<jeffrey.s.whitaker@noaa.gov>

