A

Argonne

NATIONAL
LABORATORY

.. for a brighter future

UChicago »

Argonne

Parallel NetCDF

Rob Latham
Mathematics and Computer Science Division
Argonne National Laboratory

robl@mcs.anl.gov

I/O for Computational Science

Application
High-level I/O Library

Application

Parallel File System
|/O Hardware

‘ /O Middleware (MPI-10)

Parallel File System
|/O Hardware

B Application require more software than just a parallel file system
B Break up support into multiple layers with distinct roles:

— Parallel file system maintains logical space, provides efficient access to data
(e.qg. PVFS, GPFS, Lustre)

— Middleware layer deals with organizing access by many processes
(e.g. MPI-IO, UPC-IO)

— High level I/O library maps app. abstractions to a structured,
portable file format (e.g. HDF5, Parallel netCDF)

University of California

Ivermore
National Laboratory

High Level Libraries

® Match storage abstraction to domain
— Multidimensional datasets
— Typed variables /0 Middleware (MPI-10)
— Atftributes
B Provide self-describing, structured files

B Map to middleware interface
— Encourage collective I/0O
B Implement optimizations that middleware cannot, such as

— Caching attributes of variables
— Chunking of datasets

University of Calformia
Lawrence Livermore
National Labol ratory

Higher Level I/O Interfaces

B Provide structure to files
— Well-defined, portable formats
— Self-describing
— Organization of data in file
— Interfaces for discovering contents
B Present APls more appropriate for computational science
— Typed data
— Noncontiguous regions in memory and file
— Multidimensional arrays and I/O on subsets of these arrays
B Both of our example interfaces are implemented on top of MPI-IO

University of California
Lawrence Livermore
National Laboratory

PnetCDF Interface and File Format

 University of Callformia

National Lz ratc ‘]

Parallel netCDF (PnetCDF)

B Based on original “Network Common Data Format” (netCDF) work from
Unidata

— Derived from their source code
— Argonne, Northwestern, and community
B Data Model:
— Collection of variables in single file
— Typed, multidimensional array variables
— Attributes on file and variables
B Features:
— C and Fortran interfaces
— Portable data format (identical to netCDF)
— Noncontiguous I/O in memory using MPI datatypes
— Noncontiguous I/O in file using sub-arrays
— Collective 1/0
B Unrelated to netCDF-4 work (more later)

University of California
Lawrence Liver
National Laborator

netCDF/PnetCDF Files

B PnetCDF files consist of three regions
— Header
— Non-record variables (all dimensions specified)

— Record variables (ones with an unlimited
dimension)

B Record variables are interleaved, so using more
than one in a file is likely to result in poor
performance due to noncontiguous accesses

B Data is always written in a big-endian format

A

Argonne

TORY

Record Data

Fixed—sized data

netCDF Header

1st non-record variable

2nd non-record variable

LR

by s
L

nth non-record variable

1st Record for 1st Record ¥ar

1st Record for 2nd Record Var

L
e

~.
~

1st Record for rth Record ¥ar

2nd Record for lst,
2nd, ..., rth Record

Records grow in the URLINITED

\ dimension for 1,2,..., rth var

University of California
Lawrence Live
National Laboratory

Storing Data in PnetCDF

Create a dataset (file)
— Puts dataset in define mode
— Allows us to describe the contents
« Define dimensions for variables
 Define variables using dimensions
« Store attributes if desired (for variable or dataset)
Switch from define mode to data mode to write variables
Store variable data
Close the dataset

University of California

Lawrence Livermore
National Laboratory

Simple PnetCDF Examples

Simplest possible PnetCDF version of “Hello World”
First program creates a dataset with a single attribute
Second program reads the attribute and prints it
Shows very basic APl use and error checking

University of California

Lawrence Livermore
National Laboral tory

Simple PnetCDF: Writing (1)

. _ Integers used for references
#include <mpi.h> to datasets, variables, etc.
#include <pnetcdf.h>

int main(int argc, char **argv

{

char buf[13] = "Hello World\n";

MPI_Init(&argc, &argv);

ret = ncmpi_create(MPI_COMM_WORLD, "myfile.nc",
NC_CLOBBER, MPI_INFO_NULL, &ncfile);

if (ret = NC_NOERR) return 1;

/* continues on next slide */

University of California
Lawrence Livermore
National Laboratory

Simple PnetCDF: Writing (2)

ret = ncmpi_put_att text(ncfile, NC_GLOBAL,
"string", 13, buf);

if (ret 1= NC_NOERR) return T;
ncmpi_enddef(ncfile);
Storing value while

[* entered data mode — but nothing to do */ in define mode
as an attribute

ncmpi_close(ncfile);
MPI_Finalize();
return O;

 Unive rsity of California

National Laboratory

Retrieving Data in PnetCDF

Open a dataset in read-only mode (NC_NOWRITE)
Obtain identifiers for dimensions

Obtain identifiers for variables

Read variable data

Close the dataset

University of Calformia
Lawrence Livermore
National Labol ratory

Simple PnetCDF: Reading (1)

#include <mpi.h>
#include <pnetcdf.h>
int main(int argc, char **argv)
{
int ncfile, ret, count;
char buf[13];
MPI_Init(&argc, &argv);
ret = ncmpi_open(MPI_COMM_WORLD, "myfile.nc",
NC NOWRITE, MPI_INFO_NULL, &ncfile);
if (ret = NC_NOERR) return 1;

/* continues on next slide */

University of California
Lawrence Livermore
National Laboratory

Simple PnetCDF: Reading (2)

[* verify attribute exists and is expected size */
ret = ncmpi_ing_attlen(ncfile, NC_GLOBAL, "string", &count);
if (ret '= NC_NOERR || count = 13) return 1;

[* retrieve stored attribute */

ret = ncmpi_get_att text(ncfile, NC_GLOBAL, "string", buf);
if (ret = NC_NOERR) return 1;

printf("%s", buf);

ncmpi_close(ncfile);
MPI_Finalize();
return O;

University of Calformia
Lawrence Livermore
National Labol ratory

Compiling and Running

;mpicc pnetcdf-hello-write.c -I /usr/local/pnetcdf/include/ -L /usr/local/pnetcdf/lib
-lpnetcdf -o pnetcdf-hello-write

;mpicc pnetcdf-hello-read.c -1 /usr/local/pnetcdf/include/ -L /usr/local/pnetcdf/lib
-lpnetcdf -o pnetcdf-hello-read

;mpiexec -n 1 pnetcdf-hello-write
;mpiexec -n 1 pnetcdf-hello-read
Hello World

Is -1 myfile.nc
-rw-r--r-- 1 rross rross 68 Mar 26 10:00 myfile.nc

;strings myfile.nc Q
string \

File size is 68 bytes; extra
data (the header) in file.

Hello World

University of California

/ermore
National Laboratory

Example: FLASH Astrophysics

B FLASH is an astrophysics code for
studying events such as supernovae

— Adaptive-mesh hydrodynamics
— Scales to 1000s of processors
— MPI for communication

B Frequently checkpoints:

— Large blocks of typed variables
from all processes

— Portable format

— Canonical ordering (different than
in memory)

— Skipping ghost cells

B Ghost cell
B Stored element

vermore 16

DOratory

Example: FLASH with PnetCDF

B FLASH AMR structures do not map directly to netCDF multidimensional
arrays

B Must create mapping of the in-memory FLASH data structures into a
representation in netCDF multidimensional arrays

B Chose to
— Place all checkpoint data in a single file
— Impose a linear ordering on the AMR blocks
« Use 1D variables
— Store each FLASH variable in its own netCDF variable
» Skip ghost cells
— Record attributes describing run time, total blocks, etc.

University of California]
Lawrence Livermore
National Laboratory

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

[* create dataset (file) */

status = ncmpi_create(MPlI_COMM_WORLD, filename,
NC_ CLOBBER, hints, &file_id);

[* define dimensions */

status = ncmpi_ def dim(n "dim_tot_blks",
tot_blks, &dl . .
Each dimension gets

status = ncmpi_def dim(

ncid, ~c buﬁ a unique reference
nzones. block[0], &d m

status = ncmpi_def dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);

status = ncmpi_def dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);

University of California
Lawrence Livermore
National Laboratory

Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
[* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks; Same dimensions used

dimids[1] = dim_nzb; for all variables
dimids[2] = dim_nyb;

dimids[3] = dim_nxb: /
for (i=0; i < NVARS; i++) {

status = ncmpi_def var(ncid, unk_labell[i],
NC_DOUBLE, dims, dimids, &varidsli]);

University of California k
Lawrence Livermore
National Laboratory

Storing Attributes

[* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL, "file _creation_time",
string_size, file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL, "total _blocks", NC_INT, 1,
tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode ... ¥/

University of Calformia
Lawrence Livermore
National Labol ratory

Writing Variables

double *unknowns; /* unknowns|[blk][nzb][nyb][nxb] */

size t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */

start_4d[1] = start_4d[2] = start_4d[3] = O;

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count 4d[3] = nxb;

for (i=0; i < NVARS; i++) {
[* ... build datatype “mpi_type” describing values of a single variable ... */
/* collectively write out all values of a single variable */
ncmpi_put_vara_all(ncid, varids]i], start_4d, count_4d, unknowns, 1, mpi_type);

}
status @SG(TIIG_IGD

Typical MPI buffer-
count-type tuple

University of California
Lawrence Livermore
National Laborato ry

Inside PnetCDF Define Mode

B [n define mode (collective)

— Use MPI_File_open to create file at create time

— Set hints as appropriate (more later)

— Locally cache header information in memory

» All changes are made to local copies at each process

B At ncmpi_enddef

— Process 0 writes header with MPI_File _write _at

— MPI_Bcast result to others

— Everyone has header data in memory, understands placement of all
variables

» No need for any additional header I/0O during data mode!

University of California
Lawrence Livermore
National Laboratory

Inside PnetCDF Data Mode

B [nside ncmpi_put vara_all (once per variable)
— Each process performs data conversion into internal buffer
— Uses MPI_File_set view to define file region
« Contiguous region for each process in FLASH case
— MPI_File_write_all collectively writes data
B At ncmpi_close
— MPI_File_close ensures data is written to storage

B MPI-IO performs optimizations
— Two-phase possibly applied when writing variables

University of California
Lawrence Livermore
National Laboratory

Tuning PnetCDF: Hints

B Uses MPI_Info, so identical to straight MPI-10 hin

B For example, turning off two-phase writes, in case you're doing large
contiguous collective 1/0O on Lustre:

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

MPI_Info_set(info, romio_cb_write", “disable”);
ncmpi_open(comm, flename, NC_NOWRITE, info, &ncfile);
MPI_Info_free(&info);

University of California
Lawrence Livermore
National Laboratory

Wrapping Up:

B PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective 1/0
— Data structures closely mapping to the variables described
B Easy - though not automatic — transition from serial NetCDF
B Datasets Interchangeable with serial NetCDF
B |f PnetCDF meets application needs, it is likely to give good performance
— Type conversion to portable format does add overhead
B Complimentary, not predatory
— Research
— Friendly, healthy competition

University of California
Lawrence Liver
National Laborator

References

B PnetCDF
— Mailing list, SVN
B netCDF

http://www.unidata.ucar.edu/packages/netcdf
B ROMIO MPI-IO

B Shameless plug: Parallel-I/O tutorial at SC2007

University of California
Lawrence Livermore
National Labora tory

Acknowledgements

This work is supported in part by U.S. Department of Energy Grant DE-
FC02-01ER25506, by National Science Foundation Grants EIA-9986052,
CCR-0204429, and CCR-0311542, and by the U.S. Department of Energy
under Contract W-31-109-ENG-38.

This work was performed under the auspices of the U.S. Department of

Energy by University of California, Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48.

University of California
Lawrence Livermore
National Laboratory

