
Parallel NetCDF

Rob Latham
Mathematics and Computer Science Division

Argonne National Laboratory
robl@mcs.anl.gov

2

I/O for Computational Science

 Application require more software than just a parallel file system
 Break up support into multiple layers with distinct roles:

– Parallel file system maintains logical space, provides efficient access to data
(e.g. PVFS, GPFS, Lustre)

– Middleware layer deals with organizing access by many processes
(e.g. MPI-IO, UPC-IO)

– High level I/O library maps app. abstractions to a structured,
portable file format (e.g. HDF5, Parallel netCDF)

High-level I/O Library
I/O Middleware (MPI-IO)

Parallel File System
I/O Hardware

Application
Application

Parallel File System
I/O Hardware

3

High Level Libraries

 Match storage abstraction to domain
– Multidimensional datasets
– Typed variables
– Attributes

 Provide self-describing, structured files
 Map to middleware interface

– Encourage collective I/O
 Implement optimizations that middleware cannot, such as

– Caching attributes of variables
– Chunking of datasets

High-level I/O Library
I/O Middleware (MPI-IO)

Parallel File System
I/O Hardware

Application

4

Higher Level I/O Interfaces

 Provide structure to files
– Well-defined, portable formats
– Self-describing
– Organization of data in file
– Interfaces for discovering contents

 Present APIs more appropriate for computational science
– Typed data
– Noncontiguous regions in memory and file
– Multidimensional arrays and I/O on subsets of these arrays

 Both of our example interfaces are implemented on top of MPI-IO

5

PnetCDF Interface and File Format

6

Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work from
Unidata
– Derived from their source code
– Argonne, Northwestern, and community

 Data Model:
– Collection of variables in single file
– Typed, multidimensional array variables
– Attributes on file and variables

 Features:
– C and Fortran interfaces
– Portable data format (identical to netCDF)
– Noncontiguous I/O in memory using MPI datatypes
– Noncontiguous I/O in file using sub-arrays
– Collective I/O

 Unrelated to netCDF-4 work (more later)

7

netCDF/PnetCDF Files

 PnetCDF files consist of three regions
– Header
– Non-record variables (all dimensions specified)
– Record variables (ones with an unlimited

dimension)
 Record variables are interleaved, so using more

than one in a file is likely to result in poor
performance due to noncontiguous accesses

 Data is always written in a big-endian format

8

Storing Data in PnetCDF

 Create a dataset (file)
– Puts dataset in define mode
– Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or dataset)

 Switch from define mode to data mode to write variables
 Store variable data
 Close the dataset

9

Simple PnetCDF Examples

 Simplest possible PnetCDF version of “Hello World”
 First program creates a dataset with a single attribute
 Second program reads the attribute and prints it
 Shows very basic API use and error checking

10

Simple PnetCDF: Writing (1)

#include <mpi.h>
#include <pnetcdf.h>
int main(int argc, char **argv)
{

int ncfile, ret, count;
char buf[13] = "Hello World\n";
MPI_Init(&argc, &argv);
ret = ncmpi_create(MPI_COMM_WORLD, "myfile.nc",

NC_CLOBBER, MPI_INFO_NULL, &ncfile);
if (ret != NC_NOERR) return 1;

/* continues on next slide */

Integers used for references
to datasets, variables, etc.

11

Simple PnetCDF: Writing (2)

ret = ncmpi_put_att_text(ncfile, NC_GLOBAL,
"string", 13, buf);

if (ret != NC_NOERR) return 1;
ncmpi_enddef(ncfile);

/* entered data mode – but nothing to do */

ncmpi_close(ncfile);
MPI_Finalize();
return 0;

}

Storing value while
in define mode
as an attribute

12

Retrieving Data in PnetCDF

 Open a dataset in read-only mode (NC_NOWRITE)
 Obtain identifiers for dimensions
 Obtain identifiers for variables
 Read variable data
 Close the dataset

13

Simple PnetCDF: Reading (1)

#include <mpi.h>
#include <pnetcdf.h>
int main(int argc, char **argv)
{

int ncfile, ret, count;
char buf[13];
MPI_Init(&argc, &argv);
ret = ncmpi_open(MPI_COMM_WORLD, "myfile.nc",

NC_NOWRITE, MPI_INFO_NULL, &ncfile);
if (ret != NC_NOERR) return 1;

/* continues on next slide */

14

Simple PnetCDF: Reading (2)

/* verify attribute exists and is expected size */
ret = ncmpi_inq_attlen(ncfile, NC_GLOBAL, "string", &count);
if (ret != NC_NOERR || count != 13) return 1;

/* retrieve stored attribute */
ret = ncmpi_get_att_text(ncfile, NC_GLOBAL, "string", buf);
if (ret != NC_NOERR) return 1;
printf("%s", buf);

ncmpi_close(ncfile);
MPI_Finalize();
return 0;

}

15

Compiling and Running

;mpicc pnetcdf-hello-write.c -I /usr/local/pnetcdf/include/ -L /usr/local/pnetcdf/lib
-lpnetcdf -o pnetcdf-hello-write

;mpicc pnetcdf-hello-read.c -I /usr/local/pnetcdf/include/ -L /usr/local/pnetcdf/lib
-lpnetcdf -o pnetcdf-hello-read

;mpiexec -n 1 pnetcdf-hello-write
;mpiexec -n 1 pnetcdf-hello-read
Hello World

;ls -l myfile.nc
-rw-r--r-- 1 rross rross 68 Mar 26 10:00 myfile.nc

;strings myfile.nc
string
Hello World File size is 68 bytes; extra

data (the header) in file.

16

Example: FLASH Astrophysics

 FLASH is an astrophysics code for
studying events such as supernovae
– Adaptive-mesh hydrodynamics
– Scales to 1000s of processors
– MPI for communication

 Frequently checkpoints:
– Large blocks of typed variables

from all processes
– Portable format
– Canonical ordering (different than

in memory)
– Skipping ghost cells

Ghost cell
Stored element

…
Vars 0, 1, 2, 3, … 23

17

Example: FLASH with PnetCDF

 FLASH AMR structures do not map directly to netCDF multidimensional
arrays

 Must create mapping of the in-memory FLASH data structures into a
representation in netCDF multidimensional arrays

 Chose to
– Place all checkpoint data in a single file
– Impose a linear ordering on the AMR blocks

• Use 1D variables
– Store each FLASH variable in its own netCDF variable

• Skip ghost cells
– Record attributes describing run time, total blocks, etc.

18

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;
/* create dataset (file) */
status = ncmpi_create(MPI_COMM_WORLD, filename,

NC_CLOBBER, hints, &file_id);
/* define dimensions */
status = ncmpi_def_dim(ncid, "dim_tot_blks",

tot_blks, &dim_tot_blks);
status = ncmpi_def_dim(ncid, "dim_nxb",

nzones_block[0], &dim_nxb);
status = ncmpi_def_dim(ncid, "dim_nyb",

nzones_block[1], &dim_nyb);
status = ncmpi_def_dim(ncid, "dim_nzb",

nzones_block[2], &dim_nzb);

Each dimension gets
a unique reference

19

Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
/* define variables (X changes most quickly) */
dimids[0] = dim_tot_blks;
dimids[1] = dim_nzb;
dimids[2] = dim_nyb;
dimids[3] = dim_nxb;
for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used
for all variables

20

Storing Attributes

/* store attributes of checkpoint */
status = ncmpi_put_att_text(ncid, NC_GLOBAL, "file_creation_time",

string_size, file_creation_time);
status = ncmpi_put_att_int(ncid, NC_GLOBAL, "total_blocks", NC_INT, 1,

tot_blks);
status = ncmpi_enddef(file_id);

/* now in data mode … */

21

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */
size_t start_4d[4], count_4d[4];
start_4d[0] = global_offset; /* different for each process */
start_4d[1] = start_4d[2] = start_4d[3] = 0;
count_4d[0] = local_blocks;
count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;
for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a single variable ... */
/* collectively write out all values of a single variable */
ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d, unknowns, 1, mpi_type);

}
status = ncmpi_close(file_id);

Typical MPI buffer-
count-type tuple

22

Inside PnetCDF Define Mode

 In define mode (collective)
– Use MPI_File_open to create file at create time
– Set hints as appropriate (more later)
– Locally cache header information in memory

• All changes are made to local copies at each process
 At ncmpi_enddef

– Process 0 writes header with MPI_File_write_at
– MPI_Bcast result to others
– Everyone has header data in memory, understands placement of all

variables
• No need for any additional header I/O during data mode!

23

Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable)
– Each process performs data conversion into internal buffer
– Uses MPI_File_set_view to define file region

• Contiguous region for each process in FLASH case
– MPI_File_write_all collectively writes data

 At ncmpi_close
– MPI_File_close ensures data is written to storage

 MPI-IO performs optimizations
– Two-phase possibly applied when writing variables

24

Tuning PnetCDF: Hints

 Uses MPI_Info, so identical to straight MPI-IO hin
 For example, turning off two-phase writes, in case you’re doing large

contiguous collective I/O on Lustre:

MPI_Info info;
MPI_File fh;
MPI_Info_create(&info);
MPI_Info_set(info, ”romio_cb_write", “disable”);
ncmpi_open(comm, filename, NC_NOWRITE, info, &ncfile);
MPI_Info_free(&info);

25

Wrapping Up:

 PnetCDF gives us
– Simple, portable, self-describing container for data
– Collective I/O
– Data structures closely mapping to the variables described

 Easy – though not automatic – transition from serial NetCDF
 Datasets Interchangeable with serial NetCDF
 If PnetCDF meets application needs, it is likely to give good performance

– Type conversion to portable format does add overhead
 Complimentary, not predatory

– Research
– Friendly, healthy competition

26

References

 PnetCDF
http://www.mcs.anl.gov/parallel-netcdf/
– Mailing list, SVN

 netCDF
http://www.unidata.ucar.edu/packages/netcdf

 ROMIO MPI-IO
http://www.mcs.anl.gov/romio/

 Shameless plug: Parallel-I/O tutorial at SC2007

27

Acknowledgements

This work is supported in part by U.S. Department of Energy Grant DE-
FC02-01ER25506, by National Science Foundation Grants EIA-9986052,
CCR-0204429, and CCR-0311542, and by the U.S. Department of Energy
under Contract W-31-109-ENG-38.

This work was performed under the auspices of the U.S. Department of
Energy by University of California, Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48.

