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I/O for Computational Science

Application
High-level I/O Library

Application

Parallel File System
|/O Hardware

‘ /O Middleware (MPI-10)

Parallel File System
|/O Hardware

B Application require more software than just a parallel file system
B Break up support into multiple layers with distinct roles:

— Parallel file system maintains logical space, provides efficient access to data
(e.qg. PVFS, GPFS, Lustre)

— Middleware layer deals with organizing access by many processes
(e.g. MPI-IO, UPC-IO)

— High level I/O library maps app. abstractions to a structured,
portable file format (e.g. HDF5, Parallel netCDF)
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High Level Libraries

® Match storage abstraction to domain
— Multidimensional datasets
— Typed variables /0 Middleware (MPI-10)
— Atftributes
B Provide self-describing, structured files

B Map to middleware interface
— Encourage collective I/0O
B Implement optimizations that middleware cannot, such as

— Caching attributes of variables
— Chunking of datasets
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Higher Level I/O Interfaces

B Provide structure to files
— Well-defined, portable formats
— Self-describing
— Organization of data in file
— Interfaces for discovering contents
B Present APls more appropriate for computational science
— Typed data
— Noncontiguous regions in memory and file
— Multidimensional arrays and I/O on subsets of these arrays
B Both of our example interfaces are implemented on top of MPI-IO
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PnetCDF Interface and File Format
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Parallel netCDF (PnetCDF)

B Based on original “Network Common Data Format” (netCDF) work from
Unidata

— Derived from their source code
— Argonne, Northwestern, and community
B Data Model:
— Collection of variables in single file
— Typed, multidimensional array variables
— Attributes on file and variables
B Features:
— C and Fortran interfaces
— Portable data format (identical to netCDF)
— Noncontiguous I/O in memory using MPI datatypes
— Noncontiguous I/O in file using sub-arrays
— Collective 1/0
B Unrelated to netCDF-4 work (more later)
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netCDF/PnetCDF Files

B PnetCDF files consist of three regions
— Header
— Non-record variables (all dimensions specified)

— Record variables (ones with an unlimited
dimension)

B Record variables are interleaved, so using more
than one in a file is likely to result in poor
performance due to noncontiguous accesses

B Data is always written in a big-endian format
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Storing Data in PnetCDF

Create a dataset (file)
— Puts dataset in define mode
— Allows us to describe the contents
« Define dimensions for variables
 Define variables using dimensions
« Store attributes if desired (for variable or dataset)
Switch from define mode to data mode to write variables
Store variable data
Close the dataset
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Simple PnetCDF Examples

Simplest possible PnetCDF version of “Hello World”
First program creates a dataset with a single attribute
Second program reads the attribute and prints it
Shows very basic APl use and error checking
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Simple PnetCDF: Writing (1)

. _ Integers used for references
#include <mpi.h> to datasets, variables, etc.
#include <pnetcdf.h>

int main(int argc, char **argv

{

char buf[13] = "Hello World\n";

MPI_Init(&argc, &argv);

ret = ncmpi_create(MPI_COMM_WORLD, "myfile.nc",
NC_CLOBBER, MPI_INFO_NULL, &ncfile);

if (ret = NC_NOERR) return 1;

/* continues on next slide */
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Simple PnetCDF: Writing (2)

ret = ncmpi_put_att text(ncfile, NC_GLOBAL,
"string", 13, buf);

if (ret 1= NC_NOERR) return T;
ncmpi_enddef(ncfile);
Storing value while

[* entered data mode — but nothing to do */ in define mode
as an attribute

ncmpi_close(ncfile);
MPI_Finalize();
return O;
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Retrieving Data in PnetCDF

Open a dataset in read-only mode (NC_NOWRITE)
Obtain identifiers for dimensions

Obtain identifiers for variables

Read variable data

Close the dataset
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Simple PnetCDF: Reading (1)

#include <mpi.h>
#include <pnetcdf.h>
int main(int argc, char **argv)
{
int ncfile, ret, count;
char buf[13];
MPI_Init(&argc, &argv);
ret = ncmpi_open(MPI_COMM_WORLD, "myfile.nc",
NC NOWRITE, MPI_INFO_NULL, &ncfile);
if (ret = NC_NOERR) return 1;

/* continues on next slide */
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Simple PnetCDF: Reading (2)

[* verify attribute exists and is expected size */
ret = ncmpi_ing_attlen(ncfile, NC_GLOBAL, "string", &count);
if (ret '= NC_NOERR || count = 13) return 1;

[* retrieve stored attribute */

ret = ncmpi_get_att text(ncfile, NC_GLOBAL, "string", buf);
if (ret = NC_NOERR) return 1;

printf("%s", buf);

ncmpi_close(ncfile);
MPI_Finalize();
return O;
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Compiling and Running

;mpicc pnetcdf-hello-write.c -I /usr/local/pnetcdf/include/ -L /usr/local/pnetcdf/lib
-lpnetcdf -o pnetcdf-hello-write

;mpicc pnetcdf-hello-read.c -1 /usr/local/pnetcdf/include/ -L /usr/local/pnetcdf/lib
-lpnetcdf -o pnetcdf-hello-read

;mpiexec -n 1 pnetcdf-hello-write
;mpiexec -n 1 pnetcdf-hello-read
Hello World

Is -1 myfile.nc
-rw-r--r-- 1 rross rross 68 Mar 26 10:00 myfile.nc

;strings myfile.nc Q
string \

File size is 68 bytes; extra
data (the header) in file.

Hello World
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Example: FLASH Astrophysics

B FLASH is an astrophysics code for
studying events such as supernovae

— Adaptive-mesh hydrodynamics
— Scales to 1000s of processors
— MPI for communication

B Frequently checkpoints:

— Large blocks of typed variables
from all processes

— Portable format

— Canonical ordering (different than
in memory)

— Skipping ghost cells

B Ghost cell
B Stored element
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Example: FLASH with PnetCDF

B FLASH AMR structures do not map directly to netCDF multidimensional
arrays

B Must create mapping of the in-memory FLASH data structures into a
representation in netCDF multidimensional arrays

B Chose to
— Place all checkpoint data in a single file
— Impose a linear ordering on the AMR blocks
« Use 1D variables
— Store each FLASH variable in its own netCDF variable
» Skip ghost cells
— Record attributes describing run time, total blocks, etc.
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Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

[* create dataset (file) */

status = ncmpi_create(MPlI_COMM_WORLD, filename,
NC_ CLOBBER, hints, &file_id);

[* define dimensions */

status = ncmpi_ def dim(n "dim_tot_blks",
tot_blks, &dl . .
Each dimension gets

status = ncmpi_def dim(

ncid, ~c buﬁ a unique reference
nzones. block[0], &d m

status = ncmpi_def dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);

status = ncmpi_def dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);
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Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
[* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks; Same dimensions used

dimids[1] = dim_nzb; for all variables
dimids[2] = dim_nyb;

dimids[3] = dim_nxb: /
for (i=0; i < NVARS; i++) {

status = ncmpi_def var(ncid, unk_labell[i],
NC_DOUBLE, dims, dimids, &varidsli]);
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Storing Attributes

[* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL, "file _creation_time",
string_size, file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL, "total _blocks", NC_INT, 1,
tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode ... ¥/
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Writing Variables

double *unknowns; /* unknowns|[blk][nzb][nyb][nxb] */

size t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */

start_4d[1] = start_4d[2] = start_4d[3] = O;

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count 4d[3] = nxb;

for (i=0; i < NVARS; i++) {
[* ... build datatype “mpi_type” describing values of a single variable ... */
/* collectively write out all values of a single variable */
ncmpi_put_vara_all(ncid, varids]i], start_4d, count_4d, unknowns, 1, mpi_type);

}
status @SG(TIIG_IGD

Typical MPI buffer-
count-type tuple
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Inside PnetCDF Define Mode

B [n define mode (collective)

— Use MPI_File_open to create file at create time

— Set hints as appropriate (more later)

— Locally cache header information in memory

» All changes are made to local copies at each process

B At ncmpi_enddef

— Process 0 writes header with MPI_File _write _at

— MPI_Bcast result to others

— Everyone has header data in memory, understands placement of all
variables

» No need for any additional header I/0O during data mode!
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Inside PnetCDF Data Mode

B [nside ncmpi_put vara_all (once per variable)
— Each process performs data conversion into internal buffer
— Uses MPI_File_set view to define file region
« Contiguous region for each process in FLASH case
— MPI_File_write_all collectively writes data
B At ncmpi_close
— MPI_File_close ensures data is written to storage

B MPI-IO performs optimizations
— Two-phase possibly applied when writing variables
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Tuning PnetCDF: Hints

B Uses MPI_Info, so identical to straight MPI-10 hin

B For example, turning off two-phase writes, in case you're doing large
contiguous collective 1/0O on Lustre:

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

MPI_Info_set(info, romio_cb_write", “disable”);
ncmpi_open(comm, flename, NC_NOWRITE, info, &ncfile);
MPI_Info_free(&info);
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Wrapping Up:

B PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective 1/0
— Data structures closely mapping to the variables described
B Easy - though not automatic — transition from serial NetCDF
B Datasets Interchangeable with serial NetCDF
B |f PnetCDF meets application needs, it is likely to give good performance
— Type conversion to portable format does add overhead
B Complimentary, not predatory
— Research
— Friendly, healthy competition
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References

B PnetCDF
— Mailing list, SVN
B netCDF

http://www.unidata.ucar.edu/packages/netcdf
B ROMIO MPI-IO

B Shameless plug: Parallel-I/O tutorial at SC2007
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