
1. INTRODUCTION

Developed by the Unidata Program of the University
Corporation for Atmospheric Research (UCAR), netCDF
is widely used in earth, ocean, and atmospheric
sciences because of its simple data model, ease of use,
portability, and strong user support infrastructure. Use of
the netCDF data model, data access libraries, and
machine independent format for the creation, access,
and sharing of data in the geosciences continues to
grow.

HDF5 software, originally developed at the National

Center for Supercomputing Applications (NCSA) and
now developed, maintained, supported, and distributed
by The HDF Group, Inc., implements another popular
data model, data access libraries, and format for
scientific data. The use of HDF5 is also increasing.

Over the last two years, the groups who develop and

maintain the associated netCDF and HDF5 software
have been collaborating in creating software that uses
enhancements to the HDF5 data model and format to
implement a richer netCDF data model. The result is
intended to combine some of the desirable
characteristics of netCDF and HDF5, while taking
advantage of their separate strengths. The NetCDF-4
library provides compatibility with existing netCDF
programs and data, additional data modeling
abstractions, and features for use in high performance
computing, such as parallel I/O.

After providing some background, we describe

additions to the netCDF data model and make
recommendations for data providers and developers
who may be considering the use of netCDF-4 for future
archives or applications.

2. BACKGROUND

Although netCDF (Unidata, 2005) and HDF5 (NCSA,

2005) are typically referred to as file formats for
portable, self-describing data, each is also a data model
that organizes a collection of associated abstractions
into a high-level view of how to access data, above the
level of input-output facilities provided in particular
programming languages. Both data models are
implemented as freely available libraries supporting
application programming interfaces (APIs) in multiple
programming languages.

Use of a data model provides a better level of

abstraction to describe the higher-level data objects that

netCDF and HDF offer, well above the level of bits,
bytes, and disk blocks. A data model appropriate for
scientific data access provides advantages similar to the
relational model for accessing highly structured tables in
enterprise databases: a logical view of data independent
from low-level details of storage and from the particular
language interface used to access the data.

While relational databases are adequate for many

kinds of highly structured scientific data, traditional
relational database systems lack adequate support for
access to data in multidimensional arrays, good tools for
analysis and visualization, the ability to handle large
data volumes efficiently using access patterns common
in the sciences, and simple programming language
interfaces for such data access patterns, according to
Gray (2005). As a result, alternate data models such as
netCDF and HDF5 have evolved to support useful
abstractions for scientific data access.

For example, each data model has the notion of a
named multidimensional array of data elements of the
same abstract type: a variable in netCDF parlance and
a dataset in HDF5. Both models use the term attribute
to describe metadata that can be attached to other data
objects to provide ancillary information, such as the
units of measure. Both data models provide
independence from the physical representation of the
data, insulating applications from locating desired data
by disk offsets, or dealing with access changes
necessitated by the addition of new variables or
attributes to existing datasets.

The HDF5 data model provides more types,
abstractions, and mechanisms for extensibility than
netCDF, which makes it more powerful for modeling
complex data and relationships, but somewhat more
difficult to master. It represents data within groups
(providing name scopes like directories in a filesystem)
as collections of multidimensional arrays of structures,
with links providing names for groups and structures.
Named attributes can be attached to each dataset or
group. The shape of datasets may be dynamic,
permitting new data to be added along multiple
dimensions. Support is provided for user-defined types
and for reference types that are analogous to pointers.
With its support for parallel I/O, chunking (described
below), and data compression, HDF5 is especially
appropriate for use in high-performance computing
contexts.

The netCDF classic data model, used for all versions
of netCDF before netCDF-4, has fewer primitive data
types and abstractions, representing data as sets of

6.6 NETCDF-4: SOFTWARE IMPLEMENTING AN ENHANCED DATA MODEL FOR THE GEOSCIENCES

Russ Rew*, Ed Hartnett, and John Caron
Unidata Program Center, Boulder, Colorado

*Corresponding author address: Russ Rew,
Unidata/UCAR, PO Box 3000, Boulder, CO 80307,
email: russ@unidata.ucar.edu. The National Science
Foundation is Unidata’s primary sponsor.

multidimensional arrays of primitive types with named
variables, dimensions, and attributes (see Figure 1).
Shared dimensions (an abstraction not previously
supported by the HDF5 data model) explicitly represent
variables defined on a common grid. Variables,
dimensions, and attributes are global, but attributes may
also be local to a variable. One dimension may be
unlimited (dynamic), and data may be appended
efficiently to all the variables that use this dimension.

HDF5 is used for many of NASA's Earth Observing
System data products and in DOE's Advanced
Simulation and Computing program. HDF5 has also
been chosen for distributing and archiving NPP and
NPOESS data products. NetCDF’s simpler data model
has proved adequate for representing gridded output
from climate and forecast models (for example the IPCC
Fourth Assessment model results) as well as archives
for many kinds of observational data in the earth
sciences. Recently, a netCDF-3 interface was added to
ESRI's suite of GIS applications, enabling direct access
to much atmospheric and oceanographic data within a
widely used GIS context.

3. THE NEW NETCDF-4 DATA MODEL

The netCDF-4 data model adds support for multiple
unlimited dimensions, new primitive types, user-defined
types (compound, variable-length, enum, and opaque)
and groups (see Figure 2). The new data model is, by
intention, a restricted subset of the HDF5 data model.
As described in Caron (2006), NetCDF, HDF5, and
OPeNDAP developers have begun to discuss
formalizing this intermediate Common Data Model,
providing useful mappings among the three data
models, and evolving the data models to mitigate
differences and to make OPeNDAP the remote access
protocol for netCDF-4 and netCDF-4 the persistence
format for OPeNDAP. Agreement on such a Common
Data Model could enhance interoperability for scientific
data and applications, allowing data providers to
structure their data in a way that would simplify access
using any of HDF5, netCDF-4, or OPeNDAP.

3.1 Multiple Unlimited Dimensions

An important feature of the netCDF classic data
model is the ability to efficiently append new data to
variables in a netCDF file. This is implemented by
specifying an unlimited dimension along which variables
can grow. Time is often used for the unlimited
dimension, allowing new time steps to be added for
time-dependent variables.

The restriction to only a single unlimited dimension

per file facilitates efficient access, but is also a
significant limitation in the netCDF classic data model,
because there is sometimes a need to allow data to
grow along multiple dimensions. For example a data
provider might want to add observational data for both
new times and new observing locations, but if time and
observing station are dimensions, then either the
number of times or number of observing locations must
be fixed in advance. Workarounds for this limitation
have included specifying a maximum for all dimensions
but one (which wastes space) or associating an artificial
dimension with a tuple of desired dynamic dimensions
(which obscures the natural multidimensional structure
of the data). In netCDF-4, multiple unlimited dimensions
are supported, so such workarounds are unnecessary.

3.2 New Primitive Data Types

In the netCDF classic data model, numeric data
must be represented with only five primitive types,
corresponding to the types for numeric data that could
be represented portably using the XDR standard for
external data representation: byte (8 bits), signed short
(16 bits), signed int (32 bits), float (32 bits), or double
(64 bits). The model also supports text strings as arrays
of 8-bit characters.

The netCDF-4 data model adds support for 64-bit

integers, unsigned integer types, and strings that need
not be treated as just arrays of characters.

Attribute
name: String
type: DataType
values: 1D array

Variable
name: String
shape: Dimension[]
type: DataType
array: read(), …

File
location: Filename
create(), open(), …

Dimension
name: String
length: int
isUnlimited()

Figure 1. NetCDF classic data model: a file may
have one or more variables, dimensions, and
attributes. A variable may also have one or more
attributes. Variables may share dimensions,
indicating a common grid. One dimension may be
dynamic (of unlimited length).

DataType
char
byte
short
int
float
double

3.3 User-defined Types

Four kinds of user-defined data types available in
the netCDF-4 data model are compound types, variable-
length types, enumerations, and opaque types.

Compound types: User-defined structures in C

make it easy to build up more complex and useful types
from primitives, possibly of different types. But C
structures cannot be written and read portably, because
the padding and alignment of structure members of
different types may vary from platform to platform.
NetCDF-4 exploits HDF5 capabilities to support portable
I/O for user-defined compound types, corresponding to
C structures. (Although the concept is the same, we
adopt the HDF5 terminology of "compound type" rather
than "struct" to lessen the divergence of terminology
between netCDF and HDF5.)

Compound types are useful for representing multiple

parameter values at each grid point or at each time and
space location for ungridded data. When a compound
type is used, accessing all the information at a point
requires reading only one variable, rather than reading
multiple parameter values from multiple variables.

As in C, compound types may be elements of

arrays, my include array members, and may be nested..

In HDF5, attributes may only be assigned to a whole

compound type, not individual member variables. To
accomplish assigning an attribute such as “units” to
each member variable, create an attribute named “units”
of compound type that has the same member variable
names, and assign the appropriate units string to each
member variable of the resulting units attribute. Such a
mechanism may be generalized to assign an attribute to
a subset of member variables, using identity between
names of the member variables in the compound type
and names of member variables in the associated
attribute.

Variable-length types: The netCDF-4 data model
supports variable-length vectors of any type. This
permits "ragged arrays" where the length of each row
varies. An example where this might be useful is
soundings, where the data for each sounding is of
variable length. This eliminates the need to declare a
maximum number of observations per sounding.

A variable-length vector differs from a variable that

uses an unlimited dimension, because the variable-
length does not correspond to a named dimension that
can be shared with other variables. A variable-length
variable has a base type that may be of primitive type or
of another user-defined type, such as a compound type.
Using variable-length data types in languages that lack
automatic memory management requires special
memory allocation and deallocation procedures to
prevent memory leaks.

Enumerations and Opaque Types: Other new
user-defined types include enumerations and opaque
types. Enumerations support the definition and use of
named integer constants as values. Opaque types
permit storing bland data as a named, fixed-size
sequence of bytes.

Dimension
name: String
length: int
isUnlimited()

Attribute
name: String
type: DataType
values: 1D array

Variable
name: String
shape: Dimension[]
type: DataType
array: read(), …

Group
name: String

File
location: Filename
create(), open(), …

UserDefinedType
typename: String

Figure 2. NetCDF-4 data model, added features
marked in italics: a file has a top-level unnamed
group. Each group may contain one or more
named subgroups, variables, dimensions, and
attributes. A variable may have one or more
attributes. Variables may share dimensions,
indicating a common grid. One or more
dimensions may be dynamic (of unlimited length).
User-defined compound types are available.

PrimitiveType
char
byte
short
int
int64
float
double
unsigned byte
unsigned short
unsigned int
unsigned int64
string

DataType

Compound

VariableLength
Type

Enum

Opaque

3.4 Groups

A flat file system with no directories may be
adequate for hundreds of files, but it doesn't scale well
for representing thousands of files that are more
naturally grouped in nested directories. Such a
hierarchical file system supports name scopes so that
each directory may have its own "index.html" file, for
example, without confusion or name clashes.

Analogously, name spaces and grouping can be

useful for scalability in modeling complex simulations
with multiple ensembles of outputs or large collections
of observational data made possible with modern
instruments and sensor networks.

Multiple attributes may share the same name (for

example, "units"), since each variable establishes a
scope for names of attributes attached to that variable.
Providing scopes for variable names makes practical
the use of mulitiple variables with the same name. An
example where this might be useful is storing
ensembles or model outputs run on different grids within
the same file. In netCDF-4, a group is analogous to a
directory in a modern file system, in that it serves as a
container for other groups as well as for variables,
dimensions, and attributes. Each group establishes a
naming scope for the objects it contains.

The addition of groups to the netCDF classic model

has been accomplished in a way that preserves
simplicity and backward compatibility for files and
programs that do not use or need groups. Every
netCDF-4 file has a single unnamed top-level group that
corresponds exactly to the single flat name space in
netCDF-3 files. A netCDF-3 program that knows
nothing about groups will function properly after
recompiling and linking with the netCDF-4 library, and
netCDF-3 data that does not use groups will still be
accessible through the new interface. Thus use of
groups is completely optional and transparent in
situations where they are not needed.

Groups are one of the primary types of HDF5

objects, but netCDF-4 groups are intentionally restricted
from the full generality of HDF5 groups: in netCDF-4,
unlike HDF5, they form a strict hierarchy (tree), so that
each group has a unique parent and a unique name.

There are various other uses for groups in the

netCDF-4 data model:

• Groups can be useful to "factor out" shared
information that should be stored only once in a file.
For example, information about a grid common to
ensemble model runs could be stored in a single
parent group.

• Groups can directly represent common data, for
example storing observations within each country in a
group with the country’s name.

• Information of limited interest can be stored out of the
way in a group. For example, instrument calibration
coefficients might be stored in a separate group for
observed data, out of the way of users who don't care
about calibration details.

• Groups may be useful for directly modeling some

recursive data structures, such as nested meshes.

4. THE NETCDF-4 DATA FORMAT

The netCDF-4 data format includes support for

previous netCDF format variants for compatibility with
existing data. New features supported by the format
include dynamic schema changes, chunking, "reader
makes right" numeric conversions, and use of the
Universal Character Set in names.

4.1 Format Variants

Before 2005, there was only one netCDF file format
used by all versions of netCDF. Release 3.6 provided
support for large files by allowing 64-bit offsets in the
format where previously only 32-bit offsets had been
permitted. This necessitated distinguishing between the
formats: the original format is now referred to as the
netCDF classic format, and the second variant
(supported in netCDF version 3.6 and later) as the
netCDF 64-bit offset format.

The netCDF library detects which variant of the

format is used for each file when opening it for reading
or writing, so it is not necessary to know which variant
is used. Of course, versions of the library earlier than
3.6 cannot access data in the 64-bit offset format, so
conservative data providers will preserve interoperability
by avoiding use of the 64-bit format variant until all the
applications used to access it have been relinked with
an upgraded version of the library.

With netCDF-4 and later, there is a third format

variant based on HDF5. This variant is referred to as
the netCDF-4 format, referring to an HDF5 file created
through the netCDF-4 library interface. Again, the
library automatically detects which variant of the format
is used for each file when it is opened for reading or
writing, so it is not necessary for users to know which
variant of the format is used. However, new features of
the enhanced netCDF-4 data model, such as groups
and compound types, cannot be added to netCDF-3
files. If you open an existing netCDF-3 file and try to
make use of any feature specific to netCDF-4, such as
creating a group, an error will be returned and the file
left unchanged, since such operations are not supported
for netCDF-3 files.

For convenience, we have introduced a fourth format

variant: netCDF-4 classic. This refers to a file that uses
the HDF5 storage format, but no features specific to
netCDF-4 such as groups or compound types. Such
files can be accessed, manipulated, and visualized by
netCDF-3 applications that are merely relinked to the

netCDF-4 library. These files are a kind of hybrid that
can be explicitly created and manipulated with the
netCDF-3 library interfaces and applications, but that
are HDF5 files underneath. This format is preserved by
the interface, because any attempt to add a netCDF-4-
specific feature to such a file will result in an error. As
described below, there are potential performance
implications in just using the netCDF-3 interface with the
HDF5 storage format.

The version of the format will always be detected on

reading and preserved by the library on writing, so it is
not possible to open a file and convert it to a different
format variant just by writing into it. To change the
format of a file will require use of a utility that copies the
file (for example the NCO ncks utility). Future versions
of netCDF software will continue to support reading and
writing files using the classic (32-bit offset) format, the
64-bit offset format, and both netCDF-4 format variants.
There is no need to convert existing archives from
netCDF-3 to netCDF-4 formats.

4.2 Dynamic schema changes

In the netCDF-3 classic or 64-bit offset formats, the
schema information (metadata) about names, types,
and shapes of variables, dimensions, attributes, and
attribute values is stored in a header region at the
beginning of the file. This imposes constraints on
schema changes, making it necessary to explicitly enter
"define mode" to add new variables, dimensions, or
attributes. If you neglect to reserve extra space in the
header when a file is created, additions to the schema
may result in copying all the data.

In netCDF-4 using HDF5 storage, information about

data objects is no longer stored in a single contiguous
header region, so these constraints are no longer
necessary. New variables, dimensions, and attributes
can be added dynamically, with no performance penalty.
Functions for entering and leaving define mode are still
supported, but will not result in expensive copying of
data. This is one of the potential performance benefits
with netCDF-4 classic files that use none of the netcdf-
4-specific data model features.

4.3 Chunking

Variables that make use of an unlimited (dynamic)
dimension or that use compression are stored using
chunking. This refers to multidimensional tiling of
values so that there need not be a favored order of
access to values. This form of storage is especially
appropriate when it can be anticipated that a variable's
data will be accessed along more than one dimension,
for example by row and by column. On the other hand,
chunking can result in a performance penalty compared
to use of netCDF-3 storage if data is always read in the
same order in which it was written. Tuning the default
chunking parameters provides new opportunities for
optimizing I/O performance for different patterns of
access.

4.4 Reader-makes-right numeric conversions

NetCDF-3 stores data in a portable canonical form
using the XDR standard. On some platforms, this
means data conversions in the form of byte swapping
occur both on writing and reading data, leading to
noticeable inefficiencies in copying large volumes of
data from one file to another.

NetCDF-4 takes advantage of HDF5's support for

native as well as XDR representations to support a
"reader makes right" approach that avoids unnecessary
conversions or byte swapping in most cases. Data is
written using the native representation of the writing
platform and converted on-the fly to the native
representation of the reading platform only when the
data is accessed for reading.

4.5 Universal Character Set in names

An HDF5 enhancement added for support of
netCDF-4 is the ability to specify a sequence of
characters from the Universal Character Set (Unicode /
ISO 10646) for names of variables, dimensions,
attributes, and groups. NetCDF-4 uses UTF-8
encoding, so that names that use US-ASCII characters
are unchanged.

5. OTHER FEATURES OF NETCDF-4

Other features in the initial netCDF-4 reference
release include use of autotools and refactored
documentation.

5.1 Autotools

With a transition to use of GNU autotools (autoconf,
automake, libtool), building netCDF from source on new
platforms should be somewhat easier than with netCDF-
3. Another advantage of autotools is the ability to create
dynamic libraries instead of static libraries.

5.2 Refactored documentation

We have created a new language-neutral netCDF
user's guide and four language-specific user's guides for
C, Fortran-77, Fortran-90, and C++ interfaces. All the
documentation is available from the Unidata netCDF
web site.

5.3 Programming Language Interfaces

In the initial release, only the C interface will support
all the features of the netCDF-4 data model.
Implementation and testing of Java and Fortran
interfaces are underway and it is anticipated that these
will be available soon after the 4.0 release of netCDF.
The Fortran and C++ interfaces included in the release
will support access via the netCDF-3 interfaces to
netCDF classic, 64-bit offset, or netCDF-4 classic files.

The Java interface implements higher layers of the
Common Data Model that incorporate generalized
coordinate systems and prototype support for higher-
level scientific data types such as georeferenced grids
and trajectory data. Work is underway to add support
for these higher-level abstractions to the netCDF-4 C
interface. The Java netCDF library also provides client
access to data on HTTP and OPeNDAP servers and an
I/O framework providing netCDF interfaces to data in
other formats including GRIB, HDF5, GINI, and
NEXRAD, by reading data in these other formats into
the Common Data Model. Another advanced feature of
the Java interface is support for access through virtual
datasets represented in NcML, an XML dialect for
netCDF.

Providing access to netCDF-4-specific features from

other programming languages including C++, Perl,
Python, and Ruby will depend on efforts in the netCDF
community from developers who have generously
created and maintained these language interfaces in the
past.

6. RECOMMENDATIONS

Because it is currently only available in test form as
a beta release, there is little experience with netCDF-4
on which to base recommendations for data providers,
application developers, and users. Nevertheless, we
can provide some guidance for those considering using
netCDF-4, based on intended use of the new features
and some limited testing.

6.1 Classic chicken and egg situation

Adapting an existing application to correctly handle
netCDF-4 features such as nested groups and nested
compound types will require some effort. If there are no
data providers making use of these features yet
(because very few applications exist that handle them),
then there will be no incentive to expend the resources
to adapt applications. Ultimately, data and applications
will only be adapted to netCDF-4 if a critical mass of
data and useful applications exist. Some data providers
may decide that netCDF-4 is not enough simpler than
HDF5 to justify using netCDF-4 rather than HDF5.
Similarly, application developers may decide that if they
need to modify their applications to fully support
netCDF-4, they might consider expending the extra
effort required to provide full support for HDF5 as well.

Data in netCDF-4-classic files provide some of the

benefits of netCDF-4, such as efficient dynamic schema
changes made possible with HDF5 storage, but few of
the costs of supporting the enhanced data model.

6.2 Applications

It will take some time for analysis and visualization
applications to be able to deal with new netCDF-4
features such as groups and user-defined compound
types. Our recommendation to developers of such

applications is to first try just relinking the existing
application with the new netCDF-4 library. This should
then support access to classic, 64-bit offset, and
netCDF-4 classic files with no changes needed to the
application. Adapting to nested structures and groups
may be as simple as flattening the name space by using
”.” and “/” characters in names.

The generic utility applications, ncdump and ncgen,

that are part of the standard netCDF distribution are still
(as of this writing) being adapted to netcdf-4-specific
features. Other generic software such as the NCO
utilities are also being adapted to netCDF-4 and may
eventually show significant performance gains over the
corresponding netCDF-3 utilities, especially on parallel
platforms.

6.3 Data Providers

Before making use of netCDF-4-specific features,
ensure this will not significantly restrict data access by
users of applications that cannot yet handle such
features. If you supply the applications, this may not be
a problem, but if off-the-shelf applications such as
MATLAB, IDL, or ArcGIS are used to access the data,
stick with netCDF-3 or netCDF-4-classic until the
relevant applications have been adapted and users
have been given sufficient time to update their versions
of the applications.

6.4 Distributed Access

Those who make data available for remote access
through protocols such as OPeNDAP should also
consider carefully when to begin using netCDF-4-
specific features, because such features may require
support in both the server and client. OPeNDAP already
has a head start on providing such support, because its
protocol was designed to serve data represented in
various formats, including netCDF and HDF5. The
THREDDS Data Server includes an OPeNDAP server
that is already adapted to the Common Data Model
implemented in netCDF-Java, and clients built on
netCDF-Java can also handle this data model. Future
efforts to provide Common Data Model support in other
OPeNDAP servers and in the OPeNDAP protocol
provide an opportunity to further enhance
interoperability in building distributed data services.

6.5 Interoperability with HDF5

It is possible to create data using the HDF5
interfaces that cannot be accessed through netCDF-4
interfaces, because the netCDF-4 model is intentionally
simpler. For example, with HDF5 it is possible to create
a group containment cycle in which each of two groups
contain the other. As another example, HDF5 has a
reference data type, used for indirection much like
pointers in C, but HDF5 references are not supported in
netCDF-4.

Nevertheless, it is practical to create HDF5 files that
are accessible through the netCDF-4 interface, if the
files are restricted to use only features supported by
netCDF-4 and if the new HDF5 “dimension scales”
feature is used to model shared dimensions. Following
this advice is equivalent to using the Common Data
Model, which is intended to be a more interoperable
subset of data types and structures that will map easily
to several interfaces. The netCDF-4 documentation
accompanying the first release will contain more
guidance about use of the Common Data Model.

6.6 Conventions and Recommended Practices

Authors and maintainers of netCDF conventions,
such as the widely adopted CF conventions, are
advised to be very conservative in making use of new
netCDF-4 features. The benefits of capturing more
meaning in the data by using compound types, for
example, may be outweighed by the initial paucity of
analysis and visualization applications that can handle
these data types. Support for general coordinate
systems is part of the Common Data Model that will
eventually be supported by a layer above netCDF-4, but
that layer will not be part of the initial 4.0 release. When
the coordinate support is part of the software, it will no
longer be necessary to encode coordinates in
conventions, but such coordinate conventions must still
be supported for existing data archives. Hence, existing
conventions should continue to support netCDF-3 data.

6.6 Parallel I/O Users

If you need to make use of parallel netCDF I/O for
performance reasons, you currently have a choice:

• Use pnetCDF (an implementation developed by a

group of researchers from Argonne and Northwestern
using MPI-IO directly but not HDF5), supporting
classic and 64-bit format variants from either C or
Fortran-90.

• Use the parallel I/O interfaces that are part of
netCDF-4, which may be used with HDF5-supported
features, but are currently only available from C.

It is premature to offer much additional guidance at

this early point, since we lack experience in adapting
and tuning models to use either of these parallel I/O
facilities. Both will benefit from user feedback as a
result of additional use. Ideally, the same interface
should be available for either package, but that is not
yet the case. Developers should realize that use of any
netCDF-4 specific features may prevent use of
pnetCDF, so benchmarking these two approaches might
be advised before committing to netCDF-4 specific
features.

7. BACKWARD COMPATIBILITY COMMITMENT

For scientific data important to future generations,
preserving backward compatibility of data access is
sacrosanct. Unidata has a strong commitment to

ensure that access to all earlier forms of netCDF data
will be supported by current and future versions of the
software. As far as practical, we are also committed to
maintaining the core APIs (C, Java, Fortran), so that
programs that currently work with netCDF data will
continue to work with existing data when recompiled
and relinked with new versions of the libraries.

NetCDF and HDF5 already share with XML a kind of

"forward compatibility," in which data objects that are
not recognized are ignored. This is why adding a new
variable to netCDF files typically has no effect on
programs that previously handled files lacking that
variable. However, it is unfortunately not possible to
ensure that existing applications and utilities, recompiled
and relinked but not otherwise modified, can access
new data that makes use of added features of the data
model, such as groups and compound types.

8. STATUS

The new netCDF-4 software is currently available
only in alpha release form, because it depends on HDF5
version 1.8 enhancements that have not yet been
officially released. Java and Fortran interfaces for
netCDF-4-specific features are still under development.
The ncdump utility handles netCDF-4 features and can
produce output in NcML, but the ncgen utility that
performs the reverse transformation is still under
development for netCDF-4-specific features.

The release of HDF5 version 1.8 is expected in the

first half of 2006, and the first release of netCDF-4 is
anticipated soon after that.

ACKNOWLEDGMENTS

This work was supported by the NASA Earth

Science Technology Office under NASA award AIST-
02-0071. We would also like to acknowledge
collaboration and development efforts of Mike Folk,
Quincey Koziol, Robert E. McGrath, Elena Pourmal, and
Muqun (Kent) Yang at NCSA and Greg Sjaardema at
Sandia laboratories.

REFERENCES:

Caron, J., E. Davis, Y. Ho, R. Kambic, 2006: Unidata’s
THREDDS Data Server, 22nd International Conference
on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, Atlanta,
Georgia, Am. Meteor. Soc.

Gray, J., D. T. Liu, M. A. Nieto-Santisteban, Al. S.
Szalay, G. Heber, D. DeWitt, 2005: Scientific Data
Management in the Coming Decade.
Cyberinfrastructure Technology Watch Quarterly, 1,
Number 2.

Li, J., W. Liao, A. Choudhary, R. Ross, R. Thakur, W.
Gropp, R. Latham, A. Siegel, B. Gallagher, M. Zingale,

2003: Parallel netCDF: A High-Performance Scientific
I/O Interface. SC2003, Phoenix, Arizona, ACM.

NCO web site: http://nco.sourceforge.net/

NCSA’s HDF5 web site: http://hdf.ncsa.uiuc.edu/HDF5/

Unidata’s Common Data Model site:
http://www.unidata.ucar.edu/software/netcdf/CDM/

Unidata’s netCDF web site:
http://www.unidata.ucar.edu/software/netcdf/

