
Status of netCDF-3, netCDF-4,Status of netCDF-3, netCDF-4,
and CF Conventionsand CF Conventions

Russ Rew
Community Standards for Unstructured Grids

Workshop, Boulder
2006-10-16

2

Status of netCDF-3 Work

 NetCDF 3.6 (C, Fortran, C++) eliminated most 2 GiByte
size limitations
 Supports 64-bit offset file format variant
 Other improvements not very relevant to unstructured

grids: shared libraries, portability, performance, C++
improvements, …

 NetCDF Java (nj22) continues to advance
 Through a Common Data Model interface, reads netcdf-3,

HDF5 (most), OPeNDAP, GRIB1, GRIB2, BUFR, …
 Provides CF conventions compliance, coordinate systems:
 I/O provider framework for adding new data formats

 libcf under development for a CF conventions API based
on netCDF-3

3

Status of NetCDF-4

 NetCDF-4.0-alpha17 currently available for testing
 Files created with alpha release use unsupported artifacts
 We’re still seeking feedback on performance and

functionality
 Early users have obtained 4:1 compression and 7x speedups

 NetCDF-4.0-beta waiting for HDF5 1.8-beta
 Will finalize file format, eliminate necessity for artifacts
 Expected within a few weeks of HDF5 1.8-beta release

 HDF5 1.8 currently expected in January 2007
 Has enhancements specifically for netCDF-4: variable

creation order, Unicode names, dimension scales, on-the-fly
numeric conversions

 Plans for netCDF-4.1 and beyond on netCDF-4 web site

4

NetCDF-3 Data Model

Attribute
name: String
type: DataType

values: 1D array

Variable
name: String
shape: Dimension[]
type: DataType

array: read(), …

File

location: Filename

create(), open(), …

Dimension
name: String
length: int

isUnlimited()

DataType
char
byte
short
int

float
double

A file has named variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a common

grid. One dimension may be of unlimited length.

Variables and attributes
have one of six primitive

data types.

5

NetCDF-4 Data Model (Common Data Access Model)

Dimension
name: String
length: int
isUnlimited()

Attribute
name: String
type: DataType
values: 1D array

Variable
name: String
shape: Dimension[]
type: DataType
array: read(), …

Group
name: String

File
location: Filename
create(), open(), …

DataType

PrimitiveType
char
byte
short
int

int64
float

double
unsigned byte
unsigned short

unsigned int
unsigned int64

string

UserDefinedType
typename: String

Compound

VariableLength

Enum

Opaque

A file has a top-level unnamed group. Each group may contain one or more
named subgroups, variables, dimensions, attributes, and types. Variables also
have attributes. Variables may share dimensions, indicating a common grid.

One or more dimensions may be of unlimited length.

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.

6

Some netCDF-3 Limitations
 Relevant to representing unstructured grids:

 No data structures, just scalars and multidimensional
arrays

 No ragged arrays or nested structures
 Only one shared unlimited dimension
 Flat name space for dimensions and variables

 Not relevant (?) for unstructured grids:
 No strings, just arrays of characters
 Limited numeric types
 Only ASCII characters in names
 Changes to file schema can be expensive
 Efficient access requires reads in same order as writes
 No built-in compression
 Only serial I/O

7

New Features of netCDF-4
 Relevant to representing unstructured grids:

 User-defined compound types (portable structs)
 User-defined variable-length types for ragged arrays
 Groups for nested scopes
 Multiple unlimited dimensions

 Not relevant (?) for unstructured grids:
 String type
 Additional numeric types
 Unicode names
 Efficient dynamic schema changes
 Multidimensional tiling (chunking)
 Per variable compression
 Parallel I/O

8

User-Defined Compound Type

 Like C structs, but portable
 May be nested
 Multiple variables may use same type
 Attributes may be of compound type also (needed for

units)
 Efficiency note: members stored close together

types:
compound ob {
 int station_id;
 double time;
 float temperature;
 float pressure;
}

variables:
 ob obs(nstations);

9

User-Defined Variable Length Type

 Has a name and a base type
 Can be used for “ragged arrays”
 Access to a variable-length value is atomic

 Length and values written or read together
 Can’t know length until value is read
 In C/Fortran, library allocates memory for value

 Multiple variables may use same type
 May be nested to create multidimensional variable-

length types

types:
float(*) row_of_floats;

 variables:
 row_of_floats ragged_array1(m);

10

Groups

 A non-root Group has a name and a parent group
 The root group is unnamed
 A Group may have variables, dimensions,

attributes, types, and subgroups
 A Group is analogous to a netCDF-3 file

(root group)

A B

C D

11

NetCDF-4 Architecture

NetCDF Java
applications

NetCDF-3
applications

NetCDF-4
applications

HDF5
applications

 NetCDF-4 uses HDF5 for storage, high performance
 Parallel I/O
 Chunking for efficient access in different orders, efficient use of

compression
 Conversion using “reader makes right” approach

 Provides simple netCDF interface to subset of HDF5
 Also supports netCDF classic and 64-bit formats

POSIX I/OPOSIX I/O MPI I/OMPI I/O
HDF5HDF5netCDF-3netCDF-3

netCDFnetCDF
JavaJava

netCDF-4netCDF-4

……

NetCDF Java
application

NetCDF-3
application

NetCDF-4
application

HDF5
application

Java VMJava VM

12

Status of CF
 White paper available on “Maintaining and Advancing the CF

Standard for Earth System Science Community Data”,
Bryan Lawrence, et al

 CF becoming important to more communities
 New web site set up for discussions, maintenance:

http://cf-pcmdi.llnl.gov/ eventually:
http://cfconventions.org/

 Funded staff now supporting CF
 CF Governance Panel now in existence (Oct 1), responsible

for stewardship not technical content
 Under WMO/WCRP Working Group on Coupled Modeling

(WGCM)
 Two CF committees

 Conventions
 Standard Names

13

Some Unstructured Grid Issues

 Is netCDF-3 data model adequate for representing
unstructured grids?

 If not, what netCDF-4 features are needed for
unstructured grid representations?

 Can needed netCDF-4 features for unstructured grids
be emulated in netCDF-3 data model?

 Should means of emulation of particular netCDF-4
features in netCDF-3 be elevated to conventions level?

