Status of netCDF-3, netCDF-4,
and CF Conventions

Russ Rew

Community Standards for Unstructured Grids
Workshop, Boulder

2006-10-16

Status of netCDF-3 Work

e NetCDF 3.6 (C, Fortran, C++) eliminated most 2 GiByte
size limitations

Supports 64-bit offset file format variant

Other improvements not very relevant to unstructured
grids: shared libraries, portability, performance, C++
Improvements, ...

e NetCDF Java (nj22) continues to advance

Through a Common Data Model interface, reads netcdf-3,
HDF5 (most), OPeNDAP, GRIB1, GRIB2, BUFR, ...

Provides CF conventions compliance, coordinate systems:
I/0 provider framework for adding new data formats

e libcf under development for a CF conventions API based
on netCDF-3

unidaTa

Status of NetCDF-4

e NetCDF-4.0- currently available for testing
Files created with alpha release use unsupported artifacts

We're still seeking feedback on performance and
functionality

Early users have obtained 4:1 compression and 7x speedups
e NetCDF-4.0-beta waiting for HDF5 1.8-beta
Will finalize file format, eliminate necessity for artifacts
Expected within a few weeks of HDF5 1.8-beta release
e HDF5 1.8 currently expected in January 2007

Has enhancements specifically for netCDF-4: variable
creation order, Unicode names, dimension scales, on-the-fly
humeric conversions

e Plans for netCDF-4.1 and beyond on netCDF-4 web site

name: String

type: DataType

values: 1D array

File
’ location: Filename ’
create(), open(), ...
Attribute Dimension

name: String

length: int

1sUnlimited()

Variable

name: String

_‘ shape: Dimension|]

type: DataType

array: read(), ...

NetCDF-3 Data Model

Variables and attributes
have one of six primitive
data types.

DataType
char
byte
short

int
float
double

A file has named variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a common
grid. One dimension may be of unlimited length. ﬂ

unidaTa

File

location: Filename

create(), open(), ...

t

Group

NetCDF-4 Data Model (Common Data Access Model)

Variables and attributes have one of twelve primitive

data types or one of four user-defined types.

Z}

name: String

Bk

Attribute

name: String

type: DataType

values: 1D array

Variable

name: String

—& shape: Dimension|]

type: DataType

array: read(), ...

One or more dimensions may be of unlimited length.

DataType
g UserDefinedType
|‘ typename: String
A A A
Dimension Enum
name: String
length: int Opaque
isUnlimited()
Compound
VariableLength

PrimitiveType

char
byte
short
int
int64
float
double
unsigned byte
unsigned short
unsigned int
unsigned int64

string

A file has a top-level unnamed group. Each group may contain one or more
named subgroups, variables, dimensions, attributes, and types. Variables also
have attributes. Variables may share dimensions, indicating a common grid.

unidaTa

Some netCDF-3 Limitations

e Relevant to representing unstructured grids:

No data structures, just scalars and multidimensional
arrays

No ragged arrays or nested structures
Only one shared unlimited dimension
Flat name space for dimensions and variables
e Not relevant (?) for unstructured grids:
No strings, just arrays of characters
Limited numeric types
Only ASCIT characters in names
Changes to file schema can be expensive
Efficient access requires reads in same order as writes

No built-in compression
Only serial I/0 "

unidaTa

New Features of netCDF-4

e Relevant to representing unstructured grids:
User-defined compound types (portable structs)
User-defined variable-length types for ragged arrays
Groups for nested scopes
Multiple unlimited dimensions

e Not relevant (?) for unstructured grids:
String type
Additional numeric types
Unicode names
Efficient dynamic schema changes
Multidimensional tiling (chunking)
Per variable compression
Parallel I/0O

unidaTa

User-Defined Compound Type

types:
compound ob {
int station id;
double time;
float temperature;
float pressure;

}

variables:
ob obs(nstations);

Like C structs, but portable
May be nested
Multiple variables may use same type

Attributes may be of compound type also (heeded for
units)

Efficiency note: members stored close together

/ "\‘
| i

i

unidaTa

User-Defined Variable Length Type

types:
float(*) row of floats;

variables:

row of floats ragged arrayl(m);

Has a name and a base type
Can be used for “"ragged arrays”

Access 1o a variable-length value is atomic
Length and values written or read together
Can't know length until value is read
In C/Fortran, library allocates memory for value

Multiple variables may use same type

May be nested to create multidimensional variable-
length types

unidaTa

10

Groups

[(root group)]

L ¢ JL»>o |

® A non-root Group has a name and a parent group
e The root group is unnamed

e A Group may have variables, dimensions,
attributes, types, and subgroups

® A Group is analogous to a netCDF-3 file

unidaTa

| A otODE Lo

NetCDF Java
application

|]
net@Chk
Java

Java VAV

e NetCDF-4 uses HDF5 for storage, high performance

NetCDF-4 Architecture

| AotODE 2

NetCDF-3
application

|

1

net@r=4

net@ChHE=3

POSIXSO

+ Paradllel I/0

+ Chunking for efficient access in different orders, efficient use of
compression

+ Conversion using "reader makes right" approach
e Provides simple netCDF interface to subset of HDF5

ANPXYAI YN, |

NetCDF-4
application

|

i

HIDES
VIPINT©

e Also supports netCDF classic and 64-bit formats

11

LINLS

HDF5
application

!

unidaTa

12

Status of CF

White paper available on “Maintaining and Advancing the CF
Standard for Earth System Science Community Data”,
Bryan Lawrence, et al

CF becoming important to more communities

New web site set up for discussions, maintenance:
http://cf-pcmdi.llnl.gov/ eventually:

http://cfconventions.org/

Funded staff now supporting CF

CF Governance Panel now in existence (Oct 1), responsible
for stewardship not technical content

Under WMO/WCRP Working Group on Coupled Modeling
(WGCM)

Two CF committees
+ Conventions

+ Standard Names ()

unidaTa

13

Some Unstructured Grid Issues

Is netCDF-3 data model adequate for representing
unstructured grids?

If not, what netCDF-4 features are needed for
unstructured grid representations?

Can needed netCDF-4 features for unstructured grids
be emulated in netCDF-3 data model?

Should means of emulation of particular netCDF-4
features in netCDF-3 be elevated to conventions level?

o

unidaTa

