
1

Adapting Software to
NetCDF's Enhanced Data Model

Russ Rew
UCAR Unidata

EGU, May 2010

Overview

• Background
– What is netCDF?
– What is the netCDF “classic data model”?
– What is the netCDF “enhanced data model”?

• Issues in upgrading
– Why upgrade?
– Why wait?
– What is a “chicken-and-egg logjam”?

• Experience so far
• Concluding remarks

2

What is netCDF?

• 1989: portable, self-describing data format, data
model, and software for creation, access, and
sharing of scientific data

• 1990's: widespread use in ocean and climate
modeling

• 2002: Java version with OPeNDAP client support

• 2003: NASA funded netCDF-4/HDF project;
Argonne/Northwestern parallel netCDF

• 2004: netCDF-Java plugins for reading other
formats, NcML aggregation service

• 2007: netCDF-Java Common Data Model

• 2008: netCDF-4 C and Fortran library with HDF5
integration, enhanced data model, parallel I/O

• 2009: netCDF format standard endorsed by NASA

• 2010: OPeNDAP client support for C/Fortran
libraries; udunits, libcf, GridSpec libraries included

Development milestones

The netCDF classic data model

Attribute
 name: String
 type: primitive
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: primitive
 values: type[…]

NetCDF File

Dimension
 name: String
 length: int

0..* 0..*0..*

0..* 0..*

• A netCDF File has
– Variables
– Dimensions
– Attributes

• Variables have
– Name, shape, type, values
– Associated attributes

• Dimensions have
– Name, length
– One dimension may be dynamic

• Variables may share dimensions
– Indicates common grid
– Scalar variables have no

dimensions
• Primitive types

– Numeric: byte. short, int, float,
double

– Character arrays for text

3

Evaluation: netCDF classic data model

• Strengths
– Simple to understand and

explain
– Efficient reference

implementation
– Generic applications easy

to develop
– Good representations for

gridded data
– Shared dimensions useful

for simple coordinate
system representations

• Limitations
– Small set of primitive types
– Flat name space for

naming data
– Data structures limited to

multidimensional arrays
– Lacks compound

structures, variable-length
types, nested types,
ragged arrays,
enumerations

The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named
subgroups, user-defined types, variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a common grid. One

or more dimensions may be of unlimited length.

Dimension
 name: String
 length: int

Attribute
 name: String
 type: DataType
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: DataType
 values: type[…]

Group
 name: String

File

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.

DataType

PrimitiveType
char
byte
short
int

float
double

unsigned byte
unsigned short

unsigned int
int64

unsigned int64
string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

0..*

1..*

0..*

0..*

0..*

0..*

0..*
0..*

4

Evaluation: netCDF enhanced data model

• Strengths
– Simpler than HDF5, with

similar representational
power

– Compatible with existing
data, software,
conventions

– Efficient reference
implementation

– Orthogonal features permit
incremental adoption

• Limitations
– More complex than classic

data model
– More challenging to

develop general software
tools

– Comprehensive
conventions still lacking

– Not yet widely adopted

Why upgrade? Benefits of enhanced
netCDF data model

• More natural representations using
– Strings and unsigned integer types

– Nested data structures
– Multiple unlimited dimensions and variable-length types
– Ragged arrays
– Hierarchical data organizations and name spaces
– Enumerations

• Observational data using nested compound and variable-length types, e.g.
Observations along ocean tracks; each track has a string ID, a string description,
and a variable-length list of profiles; each profile has a latitude, longitude, time,
and a variable-length list of observations; each observation records pressure,
temperature, and salinity at various depths

• Ability to read other kinds of data through netCDF API
– HDF-EOS, HDF4, HDF5, relational data, …

5

Why wait? Reasons to stick with classic
netCDF model

• Combination of classic data model with netCDF-4
– Only requires relinking instead of modifying software
– Performance benefits: compression, multi-dimensional chunking, larger

variables

• Data using enhanced data model not common yet
• Best practices and conventions not yet developed for enhanced

data model
• NetCDF-4 enhanced data model not endorsed as a standard yet
• Developer perceptions

– Must upgrade features of enhanced model all at once
– Handling potentially infinite number of user-defined types is hard

Game of chicken: Who goes first?

• Data producers

– Waiting until netCDF enhanced data
model features are supported by more
software, development of conventions

• Developers

– Waiting for netCDF data that requires
enhanced model and for development of
conventions

• Convention creators

– Waiting for data providers and software
developers to identify needs for new
conventions based on usage experience

• Result: “chicken-and-egg logjam”
– Delays effective use of advances in scientific

data models for large and complex collections

6

Experience so far: Adapting to netCDF-4

not yetnot yet

not yetnot yet

read-read-
onlyonly

yesyes

yesyes

NetCDF
Operators

(NCO)

flatflat

yesyes

yesyes

yesyes

yesyes

Python
API

yesyesyesyesread-read-
onlyonlynot yetnot yet

Compound
types, variable-
length types

yesyesyesyesread-read-
onlyonlynot yetnot yetGroups

yesyesyesyesread-read-
onlyonly

read-read-
onlyonly

Multiple
unlimited
dimensions

yesyesyesyesread-read-
onlyonlyyesyesNew primitive

types

yesyesyesyesread-read-
onlyonly

read-read-
onlyonly

Performance
features:
compression,
chunking, …

ncdump
ncgen
nccopy

CCFE’s C++
API for

netCDF-4
netCDF-

Java
NCAR’s

NCLFeatures

Experience developing nccopy utility

• Demonstrates any netCDF-4 data can be accessed through
interface without previous or built-in knowledge of user-defined
data types

• Showed netCDF-4 API is adequate for handling arbitrary nesting
of groups and user-defined types

• Provides evidence that programming generic netCDF-4
applications is not too difficult
– Classic data model: 494 lines of C
– Enhanced data model: 911 lines of C

• Also demonstrates usefulness of additional higher-level APIs for
tool developers
– Iterator APIs for simpler data access
– APIs that make recursion unnecessary (e.g. comparing two values of a

user-defined type)

7

Guidance for developers

• Add support for netCDF enhanced data model features incrementally

– new primitive types: unsigned numeric types and strings

– nested Groups (simple recursion)

– enumeration types (easy, no nesting)

– opaque types (easy, no nesting)

– compound types with only primitive members

– compound types with fixed-size array members

– variable-length arrays of primitives

– compound types with members of user-defined type

– variable-length arrays of user-defined types

• Look at nccopy for examples that read or write netCDF-4 data with all these
features

Concluding Remarks

• NetCDF-4’s enhanced data model adds representational power
– Extension of classic model, so maintains compatibility with existing data

and programs
– Adds groups, compound, enumerated, and variable-length types

• Adapting netCDF-3 software to netCDF-4 is practical
– ncdump, nccopy, ncgen handle all netCDF-4 data model features
– Incremental adaptation is easy and useful

• Upgrading software to handle features of netCDF-4 enhanced
data model has significant benefits
– Data providers can use more natural representation of complex data

semantics
– More natural conventions become possible
– End users can access more types of data through netCDF APIs

• Developers offer the best hope for breaking the chicken-and-egg
logjam, fighting chained metaphors!

8

For more information

Web site: www.unidata.ucar.edu/netcdf/

Russ Rew: russ@unidata.ucar.edu

New primitive types

• Unsigned numeric types better for representing data providers
intent
– ubyte: 8-bit unsigned interger

– ushort: 16-bit unsigned integer

– uint: 32-bit unsigned integer

• 64-bit integers needed for statistics and counts in large datasets
– int64: 64-bit signed integer

– uint64: 64-bit unsigned integer

• Variable-length strings an overdue improvement over character
arrays
– string: compact, variable-length strings

9

Groups

• Like directories in a file system, Groups provide name spaces
and a hierarchy of containers

• Uses
– Factoring out common information

• Containers for data within regions, ensembles
• Model metadata

– Organizing a large number of variables

– Providing name spaces for multiple uses of same names for dimensions,
variables, attributes

– Modeling large hierarchies

Variable-length types

Uses:

• Ragged arrays

• Modeling relational tables

• Nested with compound types for in situ observational data
(profiles, soundings, time series)

• Example: observations along ocean tracks
– each track has an ID, a description, and a variable-length list of profiles

• each profile has a latitude, longitude, time, and a variable-length list of
observations

– each observation records pressure, temperature, and salinity at various depths

10

Compound types

Uses include:

• Representing vector quantities like wind

• Bundling multiple in situ observations together (profiles,
soundings)

• Modeling relational database tuples

• Providing containers for related values of other user-defined
types (strings, enums, ...)

• Representing C structures, Fortran derived types portably

Nested types

• Compound types may include other variable-length types or
compound types as members

• Variable-length types may include other compound types or
variable-length types as members

• Result is a potentially infinite number of user-defined data types

• Handling this in software can be new or intimidating to software
developers

