Is, &

Adapting Software to
NetCDF's Enhanced Data Model

Russ Rew
UCAR Unidata

EGU, May 2010

% 3¢ UCAR Reckams u%?a

Overview

Background

— What is netCDF?

— What is the netCDF “classic data model”?

— What is the netCDF “enhanced data model”?
Issues in upgrading

— Why upgrade?

— Why wait?

— What is a “chicken-and-egg logjam”?
Experience so far

Concluding remarks




What is netCDF?

EEE  NetCDF

NetCDF (network Common Data Form) s a set of software braries and machine-ndependent data formats that support the
NEICDF cestion. access, and snarng of amay-crented scentfic cata.

‘Gounioad the netCDF source ditrioytion, The distrbution

4.0.1 courioads page for precompled

Instatation instructions for C, Fortran, and G+ ibraries
NeCor o s

 Oiher ietaces fo neiCOF data: MATLAS, Onecivec,
Per, Pytron, R, Ruty, T

T Citwar o anasain o Gspeying ntCOF data
«Wno uses netCOF?

+ Sovscpars ey wiah o couionscey nelCOF sapanct
release, or see output from netCDF tes

fies and programs
apérs and Presentations

< NetCOE g it
to the nstedfgroup or digest of netcafgroup or

R ing maiing ists

brouse the netCOF

. Sranse the nelcclaroup maing 18 srcrives

« Search or browse the netccf-porting mang kst archives

Questions o comments can be sent 1o Unidata netCOF
Support

NetCDF Build Troubleshooter

 Speci nsinctions for It and Portans Group complers

ssual buid problems

chmwe symotams and resciution
routleshooting buld prodiems

" Reparing prosems

NotCDF News and Announcements

NetCOF 4.1
candicate of the netCF ClForraniC+ ior

parlel 10 10 Gassic format fies, bug fxes and portabisty an
amants. Pesse sond any fescback 10 support
fitt i

Presenaton on NetCDF-AHDFS Crurking Avalabe: Eena of e
FOFS team auggess s prssenialon on sovences se of FOFS
SICDFA users who want 1o maxmze paromance.

NetCDF Workshop Materials Available: The materiais from the 2000
NetCDF User Workshop are now avaiatie on fine: 2009 NetCOF
Workshop.

NetCDF 4.0.1 Release: e a2 sieasad to amunce e r8ease of
version 4.0.1 of the netCOF CiFortran/Cr+.

nciuces bug fixes and portatity and performance snnancements. Ses
e eisase notes i move nforation: Flssee s6nd sy feochack 15
suppor-netecf @unidata.ucar.edu.

NetCOF Workshop Orine: The web pages from the Unicata.

2008
workshop NelCDF for Data Providers and Developers are now avalable.

more news items >

Contact Us  Ste Map _ Search Terms and Conditions __Privacy Policy __Participation Policy

2 menter of the UCAR Communty Prograns. is manages by the Unwersty

T UCAR SOUMUNTY Ctraten i Aimospasc Researcn, and s spavsored by e hatoral Sconce Foupdation
AN P.O. Box 3000 + Boulder, CO 80307-3000 USA + Tel: 303-497-8643 + F;x 303-497-8690

Development milestones

1989: portable, self-describing data format, data
model, and software for creation, access, and
sharing of scientific data

1990's: widespread use in ocean and climate
modeling

2002: Java version with OPeNDAP client support

2003: NASA funded netCDF-4/HDF project;
Argonne/Northwestern parallel netCDF

2004: netCDF-Java plugins for reading other
formats, NcML aggregation service

2007: netCDF-Java Common Data Model

2008: netCDF-4 C and Fortran library with HDF5
integration, enhanced data model, parallel I/O

2009: netCDF format standard endorsed by NASA

2010: OPeNDAP client support for C/Fortran
libraries; udunits, libcf, GridSpec libraries included

The netCDF classic data model

» A netCDF File has
— Variables
— Dimensions
— Attributes

NetCDF File

0..* 0..*

* Variables have

Attribute

Dimension

— Name, shape, type, values
— Associated attributes
« Dimensions have

name: String
type: primitive
value: type][ ]

name: String

length: int

— Name, length
— One dimension may be dynamic
» Variables may share dimensions
— Indicates common grid
— Scalar variables have no
dimensions
» Primitive types
— Numeric: byte. short, int, float,
double
— Character arrays for text

0.* 0..* 0..*%
Variable
name: String

._‘ shape: Dimension][ ]

type: primitive

values: type] ... ]




Evaluation: netCDF classic data model

» Strengths

— Simple to understand and
explain

— Efficient reference
implementation

— Generic applications easy
to develop

— Good representations for
gridded data

— Shared dimensions useful
for simple coordinate
system representations

« Limitations

— Small set of primitive types

— Flat name space for
naming data

— Data structures limited to
multidimensional arrays

— Lacks compound
structures, variable-length
types, nested types,
ragged arrays,
enumerations

The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named
subgroups, user-defined types, variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a common grid. One
or more dimensions may be of unlimited length.

S,

o
O UserDefinedType PrimitiveType
typename: String i
byte
0.% AN short

Dimension

float

Attribute

name: String

name: String

double
unsigned byte
unsigned short

type: DataType length: int
value: type] ]
0.%
0.% 0.5
Variable
name: String

shape: Dimension] ] o_
type: DataType
values: type][ ... |

| Compound I int64

unsigned int

unsigned int64
VariableLength string

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.




Evaluation: netCDF enhanced data model

» Strengths

— Simpler than HDF5, with
similar representational
power

— Compatible with existing
data, software,
conventions

— Efficient reference
implementation

— Orthogonal features permit
incremental adoption

« Limitations
— More complex than classic
data model

— More challenging to
develop general software
tools

— Comprehensive
conventions still lacking

— Not yet widely adopted

Why upgrade? Benefits of enhanced
netCDF data model

» More natural representations using
— Strings and unsigned integer types
— Nested data structures

— Multiple unlimited dimensions and variable-length types

— Ragged arrays

— Hierarchical data organizations and name spaces

— Enumerations

+ Observational data using nested compound and variable-length types, e.g.

Observations along ocean tracks; each track has a string ID, a string description,
and a variable-length list of profiles; each profile has a latitude, longitude, time,
and a variable-length list of observations; each observation records pressure,
temperature, and salinity at various depths

+ Ability to read other kinds of data through netCDF API
— HDF-EQOS, HDF4, HDF5, relational data, ...




Why wait? Reasons to stick with classic
netCDF model

» Combination of classic data model with netCDF-4

— Only requires relinking instead of modifying software

— Performance benefits: compression, multi-dimensional chunking, larger
variables

+ Data using enhanced data model not common yet

» Best practices and conventions not yet developed for enhanced
data model

* NetCDF-4 enhanced data model not endorsed as a standard yet
» Developer perceptions

— Must upgrade features of enhanced model all at once
— Handling potentially infinite number of user-defined types is hard

Game of chicken: Who goes first?

« Data producers

— Waiting until netCDF enhanced data
model features are supported by more
software, development of conventions

» Developers

— Waiting for netCDF data that requires
enhanced model and for development of
conventions

« Convention creators

— Waiting for data providers and software
developers to identify needs for new
conventions based on usage experience

* Result: “chicken-and-egg logjam”

— Delays effective use of advances in scientific
data models for large and complex collections




Experience so far: Adapting to netCDF-4

. NCAR's | NSCDF | hoicpp. | python |CCFE'sCe+| ncdump
eatures NCL Operators e AP API for ncgen
(NCO) netCDF-4 nccopy
Performance | |
features: read= . read= . . .
compression, only yes only yes yes yes
chunking, ...
New primitive o o read- e e e
types yes yes only yes yes yes
Multiple read- | read- read- e . .
dimensions only only only yes yes e
- —_— read-
Groups ol vel ol vel Ves ves Ves
p notyet | notyet Qf]]y yes yes yes
Compound o | read-
types, variable- | not yet | not yet flat yes yes
length types Oﬂly

Experience developing nccopy utility

Demonstrates any netCDF-4 data can be accessed through
interface without previous or built-in knowledge of user-defined
data types

Showed netCDF-4 API is adequate for handling arbitrary nesting
of groups and user-defined types

Provides evidence that programming generic netCDF-4
applications is not too difficult

— Classic data model: 494 lines of C
— Enhanced data model: 911 lines of C

Also demonstrates usefulness of additional higher-level APIs for
tool developers

— lterator APIs for simpler data access

— APIs that make recursion unnecessary (e.g. comparing two values of a
user-defined type)




Guidance for developers

Add support for netCDF enhanced data model features incrementally

— new primitive types: unsigned numeric types and strings
— nested Groups (simple recursion)

— enumeration types (easy, no nesting)

— opaque types (easy, no nesting)

— compound types with only primitive members

— compound types with fixed-size array members

— variable-length arrays of primitives

— compound types with members of user-defined type

— variable-length arrays of user-defined types

Look at nccopy for examples that read or write netCDF-4 data with all these
features

Concluding Remarks

NetCDF-4’s enhanced data model adds representational power

— Extension of classic model, so maintains compatibility with existing data
and programs

— Adds groups, compound, enumerated, and variable-length types
Adapting netCDF-3 software to netCDF-4 is practical

— ncdump, nccopy, ncgen handle all netCDF-4 data model features
— Incremental adaptation is easy and useful

Upgrading software to handle features of netCDF-4 enhanced
data model has significant benefits

— Data providers can use more natural representation of complex data
semantics

— More natural conventions become possible
— End users can access more types of data through netCDF APls

Developers offer the best hope for breaking the chicken-and-egg
logjam, fighting chained metaphors!




For more information

Web site: www.unidata.ucar.edu/netcdf/

Russ Rew: russ@unidata.ucar.edu

New primitive types

Unsigned numeric types better for representing data providers
intent

— ubyte: 8-bit unsigned interger

— ushort: 16-bit unsigned integer

— uint: 32-bit unsigned integer

64-bit integers needed for statistics and counts in large datasets
— int64: 64-bit signed integer

— uint64: 64-bit unsigned integer
Variable-length strings an overdue improvement over character
arrays

— string: compact, variable-length strings




Groups

Like directories in a file system, Groups provide name spaces

and a hierarchy of containers

Uses

— Factoring out common information

» Containers for data within regions, ensembles
* Model metadata

— Organizing a large number of variables

— Providing name spaces for multiple uses of same names for dimensions,
variables, attributes

— Modeling large hierarchies

Variable-length types

Uses:

Ragged arrays
Modeling relational tables

Nested with compound types for in situ observational data
(profiles, soundings, time series)

Example: observations along ocean tracks

— each track has an ID, a description, and a variable-length list of profiles

 each profile has a latitude, longitude, time, and a variable-length list of
observations

— each observation records pressure, temperature, and salinity at various depths




Compound types

Uses include:

Representing vector quantities like wind

Bundling multiple in situ observations together (profiles,
soundings)

Modeling relational database tuples

Providing containers for related values of other user-defined
types (strings, enums, ...)

Representing C structures, Fortran derived types portably

Nested types

Compound types may include other variable-length types or
compound types as members

Variable-length types may include other compound types or
variable-length types as members

Result is a potentially infinite number of user-defined data types
Handling this in software can be new or intimidating to software

developers




