
Introduction to netCDF
formats, data models, and

utilities	

Russ	
 Rew,	
 UCAR	
 Unidata	

Workshop	
 on	
 Using	
 Unidata	
 Technologies	
 with	
 Python	

21-­‐22	
 October	
 2014	

Introduction to netCDF	

Covered	

•  Overview	

•  Formats	

•  Data models	

•  Utilities	

•  Exercises	

Not covered	

•  Building and installing	

•  Library architecture	

•  Application programming

interfaces for C, Java, ...	

•  Remote access with DAP	

•  CF conventions	

•  Compression and chunking	

•  Diskless files	

•  Parallel I/O, HPC issues	

•  Future plans	

See most recent netCDF workshop for subjects on right	

Overview of netCDF	

History of netCDF development	

Knowing how netCDF evolved explains some of the
oddities of its architecture.	

More than just a file format ...	

More than just a file format ...	

More than just a file format ...	

At its simplest, it’s also:	

	

•  A data model	

•  An application programming interface (API)	

•  Software implementing the API	

	

Together, the format, data model, API, and
software support the creation, access, and
sharing of scientific data.	

What is netCDF, really?	

•  Four format variants	

o  Classic format and 64-bit offset format for netCDF-3	

o  NetCDF-4 format and netCDF-4 classic model format	

•  Two data models	

o  Classic model (for netCDF-3)	

o  Enhanced model (for netCDF-4)	

•  Many language APIs	

o  C-based (Python, C, Fortran, C++, R, Ruby, ...)	

o  Java-based (Java, MATLAB, ...)	

•  Unidata and 3rd-party software (NCO, NCL, CDO, ...)	

Do users have to know about these complications?	

Not usually, thanks to ...	

Version compatibility and transparency	

You mostly don't need to be aware of version
complications, because new versions of Unidata
netCDF software continue to support	

	

•  All previous netCDF formats and their variants	

•  All previous netCDF data models	

•  All previous APIs* 	

 *Disclaimer: exceptions for bugs, early releases, documented experiments	

	

Also, netCDF data written with any language API is
readable through other language APIs. * 	

*Exception: currently some advanced netCDF-4 features are only available from C and Fortran APIs	

	

To ensure future access to existing data archives, Unidata is

committed to compatibility of:	

!  Data access: new versions of netCDF software will provide read

and write access to previously stored netCDF data.	

!  Programming interfaces: C and Fortran programs using

documented netCDF interfaces from previous versions will work

without change* with new versions of netCDF software.	

!  Future versions: Unidata will continue to support both data

access compatibility and program compatibility in future netCDF

releases*.

 *See reverse side of this slide for disclaimers and exceptions.	

NetCDF Compatibility Certificate	

Summary: netCDF formats, data models,
APIs	

•  File formats for portable data and metadata	

o  Support array-oriented scientific data and metadata	

o  Make data self-describing, portable, scalable, remotely accessible,

archivable, and structured	

•  Data models for geosciences	

o  Classic: simplest model -- dimensions, variables, and attributes	

o  Enhanced: more complex and powerful model – adds groups

and user-defined types	

•  APIs for building applications and services	

o  Unidata supports and maintains C and Java implementations.	

o  Unidata provides best-effort support for Fortran and C++

implementations.	

o  Open source community and 3rd parties support and maintain

other APIs, including netcdf4-python for Python.	

netCDF formats	

Characteristics of netCDF formats 1	

NetCDF data is:	

•  Self-describing: You can include metadata as well as

data, name variables, locate data in time and space, store
units of measure, conform to metadata standards.	

•  Portable: You can write on one platform and read it on
other platforms.	

•  Scalable: You can access small subsets of large datasets
efficiently.	

•  Appendable: You can add new data efficiently without
copying existing data. You can add new metadata
without changing existing programs.	

Characteristics of netCDF formats 2	

•  Remotely accessible: You can access data in
netCDF and other formats from remote servers
using OPeNDAP protocols.	

•  Archivable: You can access earlier versions of
netCDF formats using current and future versions
of software.	

•  Structured: You can use a variety of types and
data structures to capture the meaning in your
data.	

NetCDF classic format	

Strengths	

	

"  Simple to understand

and explain	

"  Supported by many

applications	

"  Standardized for used

in many archives, data
projects	

"  Mature conventions
and best practices
available	

Limitations	

	

!  No support for

efficient compression	

!  Schema changes

slowed by copying
data	

!  4 GiB limits on
variable sizes	

!  Performance issues
reading data in
different order than
written	

NetCDF-4 format	

Strengths	

"  Efficient compression
from HDF5 storage	

"  Efficient access with
HDF5 chunking	

"  Efficient schema
changes supported	

"  Variables can be huge	

"  Good testing and

support for high
performance computing
platforms	

	

Limitations	

!  Zlib compression
sometimes not
competitive	

!  Chunking defaults often
not appropriate, need
careful tuning	

!  Complex format
discourages multiple
implementations	

!  Workarounds required to
handle lack of HDF5
support for shared, named
dimensions	

NetCDF-4 classic-model transitional “format”	

netCDF-4

•  Requires netCDF-4 APIs to access
enhanced model features, such as
strings, groups, and user-defined types

•  Good for new data and applications

netCDF-4
classic model

•  Can be accessed through netCDF-3
APIs, compatible with classic data model

•  Uses netCDF-4/HDF5 storage for
performance: compression, chunking, …

•  Transparent access after library update

netCDF-3
•  Compatible with existing

applications

•  Simplest data model and API

netCDF data models	

The netCDF classic data model	

•  NetCDF data has named dimensions,	
 variables, and a-ributes.	

•  Dimensions are for specifying shapes of variables	

•  Variables are for data, attributes are for metadata	

•  Attributes may apply to a whole dataset or to a variable	

•  Variables may share dimensions, indicating a common grid.	

•  One dimension may be of unlimited length.	

•  Each variable or attribute has a type: char, byte, short, int, float, double	

Dimensions Attributes Variables

The netCDF classic data model (UML)	

NetCDF Data has	

Dimensions	
 	
 (lat,	
 lon,	
 level,	
 Hme,	
 …)	

Variables	
 	
 	
 	
 	
 	
 (temperature,	
 pressure,	
 …)	

ALributes	
 	
 	
 	
 	
 (units,	
 valid_range,	
 …)	

Each dimension has	

Name, length	

Each variable has	

Name, shape, type, attributes	

N-dimensional array of values	

Each attribute has	

Name, type, value(s)	

Variables may	
 share	
 dimensions	

Represents shared coordinates, grids	

Variable and attribute values are of type	

Numeric: 8-bit byte, 16-bit short, 32-bit int,

32-bit float, 64-bit double	

Character: arrays of char	
 for text	

Attribute
 name: String
 type: primitive
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: primitive
 values: type[…]

NetCDF Data

Dimension
 name: String
 length: int

0..*	

0..*	

0..*	

0..*	

 0..*	

UML	
 =	
 Unified	
 Modeling	
 Language	

The netCDF-4 enhanced data	
 model	

A file has a top-level unnamed group. Each group may contain one or more

named subgroups, user-defined types, variables, dimensions, and attributes.
Variables also have attributes. Variables may share dimensions, indicating

a common grid. One or more dimensions may be of unlimited length. 	

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.	

Variable
 name: String
 shape: Dimension[]
 type: DataType
 values: type[…]

Dimension
 name: String
 length: int

Attribute
 name: String
 type: DataType
 value: type[]

 Group
 name: String

NetCDF Data

DataType

PrimitiveType
char
byte
short
int

float
double

unsigned byte
unsigned short
unsigned int

int64
unsigned int64

string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

0..*	

1..*	

0..*	

0..*	

0..*	

0..*	

0..*	

0..*	

Variables or attributes?	

	

•  intended for data	

•  can hold arrays too large

for memory	

•  may be multidimensional	

•  support partial access (only

a subset of values)	

•  values may be changed,

more data may be
appended	

•  may have attributes	

•  shape specified with

netCDF dimensions	

•  not read until accessed	

	

•  intended for metadata	

•  for small units of information that
fit in memory	

•  for single values, strings, or small
1-D arrays	

•  atomic access, must be written or
read all at once	

•  values typically don't change after
creation	

•  an attribute may not have
attributes	

•  read when file opened	

Variables	
 Attributes	

NetCDF classic data	
 model	

Strengths	

	

"  Data model simple to

understand and explain	

"  Can be efficiently

implemented	

"  Representation good for

gridded multidimensional
data 	

"  Shared dimensions useful
for coordinate systems	

"  Generic applications easy
to develop	

Limitations	

	

#  Small set of primitive types	

#  Data model limited to

multidimensional arrays,
(name, value) pairs	

#  Flat name space that
hinders organizing many
data objects	

#  Lack of nested structures,
variable-length types,
enumerations	

NetCDF-4 enhanced	
 data	
 model	

Strengths	

	

"  Increased representational

power for more complex
data	

"  Adds shared, named
dimensions to HDF5 data
model	

"  Compatible with netCDF-3
classic data model	

"  Adds useful primitive types	

"  Provides nesting:

hierarchical groups,
recursive data types	

Limitations	

	

#  More complex than classic

data model	

#  Effort required to develop

general tools and
applications	

#  Adoption proceeding slowly	

#  Best practices and

conventions still maturing	

	

netCDF utilities
(netCDF without programming)	

Common Data Language (CDL)	

Text notation for netCDF metadata and data	

April	
 12,	
 2011	

 netcdf example { // example of CDL notation!
 dimensions:!

! x = 2 ;!
! y = 8 ;!

 variables:!
! float rh(x, y) ;!
! ! rh:units = "percent" ;!
! ! rh:long_name = "relative humidity" ;!

 // global attributes!
! :title = "simple example, lacks conventions" ;!

 data:!
 rh =!
 2, 3, 5, 7, 11, 13, 17, 19,!
 23, 29, 31, 37, 41, 43, 47, 53 ;!
}!

Example with 2 dimensions (x and y), 1 variable (rh), 2 variable attributes
(units and long_name), 1 global attribute (title), and 16 data values.	

Utility programs for netCDF to/from CDL	

$ ncdump -h co2.nc # converts netCDF to CDL

April	
 12,	
 2011	

netcdf co2 {!
dimensions:!

!T = 456 ;!
variables:!

!float T(T) ;!
! !T:units = "months since 1960-01-01" ;!
!float co2(T) ;!
! !co2:long_name = "CO2 concentration by volume" ;!
! !co2:units = "1.0e-6" ;!
! !co2:_FillValue = -99.99f ;!

!
// global attributes:!

! !:references = "Keeling_etal1996, Keeling_etal1995" ;!
}!

•  "-­‐h"	
 is	
 for	
 "header	
 only",	
 just	
 outputs	
 metadata,	
 no	
 data	

•  "-­‐c"	
 outputs	
 header	
 and	
 coordinate	
 variable	
 data	

•  ncgen	
 does	
 the	
 opposite	
 of	
 ncdump,	
 converts	
 CDL	
 to	
 netCDF	

The ncdump utility	

ncdump converts netCDF data to human-readable text form.	

Useful for browsing data, has lots of options.	

April	
 12,	
 2011	

netCDF
 (data)

CDL
(text)

ncdump!

ncdump [-c|-h] [-v ...] [-k] file.nc	

	

[-h | -c] 	
header only, or coordinates and header 	

[-v var1 [,...]] 	
data for variable(s) var1,... only	

[-k] 	
output kind of netCDF file instead of CDL	

[-t] 	
show time data as date-time	

file.nc 	
name of netCDF input file or OPeNDAP URL	

The ncgen utility	

ncgen generates a netCDF file, or a program to generate the netCDF file.	

CDL
(text)

netCDF
 (data)

program
(c, f77, java)

ncgen -b!

ncgen –l lang!

ncgen [-b] [-o file.nc] [-k kind] [-l c | java] file.cdl	

	

[-b] 	
 	
binary output as a netCDF file, with “.nc” extension	

[-o file.nc] 	
like -b except output netCDF to specified file	

[-k kind] 	
kind of output netCDF file, simplest that works if omitted	

[-l c | f77 | java] 	
language of program generated to standard output	

file.cdl 	
 	
name of input CDL file	

Using ncgen and ncdump together	

Together, ncdump and ncgen can accomplish simple manipulations with
no programming. ncdump and ncgen are inverses:	

April	
 12,	
 2011	

netCDF
 data

CDL
text

ncgen!

ncdump!

netCDF
 data

CDL
text

ncdump! edited
CDL

modified
netCDF

 data

text!
editor! ncgen!

To edit metadata or data in a netCDF file:	

Note: not practical for huge netCDF files or lots of files. For that, you need
to write a program, using netCDF library.	

More of using ncgen and ncdump together	

To create a new netCDF file with lots of metadata:	

CDL

CDL

netCDF
 data program

ncgen !
–l lang! edited

program

text!
editor!

compile!
& run!

text!
editor!

1.  Use text editor to write CDL file with lots of metadata but no data.	

2.  Use ncgen to generate C or Fortran program for writing netCDF.	

3.  With text editor, insert netCDF “var_put” calls for writing data.	

4.  Compile and run the program to create desired netCDF file.	

5.  Optionally, use ncdump to verify result.	

ncdump

The nccopy utility	

nccopy copies and optionally compresses and chunks netCDF data.	

April	
 12,	
 2011	

netCDF
 data

netCDF
 data

nccopy!

nccopy [-k kind] [-u] [-d level] [-s] [-c chunkspec] input output	

	

[-k kind] 	
kind of output netCDF, default same as input	

[-u] 	
 	
convert unlimited dimensions to fixed-size in output	

[-d level] 	
zlib “deflation” level, default same as input	

[-s] 	
 	
shuffling option, sometimes improves compression	

[-c chunkspec] 	
specify chunking for dimensions	

input 	
 	
name of input file or OPeNDAP URL	

output 	
 	
name of output file	

Using nccopy	

Compress netCDF data to a specified level, compressing each variable
separately.	

netCDF
 data

netCDF
 data

nccopy -d1!

netCDF
 data

netCDF
 data

nccopy -k1!

Convert a netCDF-4 classic model file to a netCDF-3 classic file,
uncompressing any compressed variables.	

netCDF exercises	

Sample files for exercises	

•  Small netCDF file: data/mslp.nc	

•  Test file for compression: data/testrh.nc	

•  You can run netCDF utilities in iPython using “!” prefix, as in	

>>> !ncdump file.nc!
•  Here’s an example of capturing the output of a command (as

a list of strings) into a python variable using assignment, and
writing the list of output strings, separated by newlines, to a
file:	

 >>> f = open(‘file.cdl’, ‘w’)	

 >>> output_string = !ncdump file.nc!
 >>> f.write(output_string.n)!
 >>> f.close()!
!
 !

Try ncdump utility	

•  Look at just the header information (also called the schema or
metadata):
$ ncdump -h mslp.nc	

•  Store entire CDL output for use later in ncgen exercises	

 	
$ ncdump mslp.nc > mslp.cdl	

•  Look at header and coordinate information, but not the data:

$ ncdump -c mslp.nc	

•  Look at all the data in the file, in addition to the metadata:

$ ncdump mslp.nc	

•  Look at a subset of the data by specifying one or more variables:

$ ncdump -v lat,time mslp.nc	

•  Look at times in human-readable form:

$ ncdump -t -v lat,time mslp.nc	

•  Look at what kind of netCDF data is in the file (classic, 64-bit offset,

netCDF-4, or netCDF-4 classic model):
$ ncdump -k mslp.nc	

Try ncgen utility	

•  Check a CDL file for any syntax errors:	
 	

	
 $ ncgen mslp.cdl	

•  Edit mslp.cdl and change something (name of variable, data value, etc.). 	

•  Use ncgen to generate new binary netCDF file (my.nc) with your

changes:	

	
$ ncgen –o my.nc mslp.cdl 	

	
$ ncdump my.nc	

•  Generate a C, Fortran, or Java program which, when compiled and run,

will create the binary netCDF file corresponding to the CDL text file.
$ ncgen –l c mslp.cdl > mslp.c	

	
$ ncgen –l f77 mslp.cdl > mslp.f77	

	
$ ncgen –l java mslp.cdl > mslp.java	

•  Try compiling and running one of those programs. You will need to
know where the netCDF library is to link your program.	

Try remote access	

•  Look at what's in some remote data from an OPeNDAP server: 	
	

!$ SERVER=http://test.opendap.org!
!$ REMOTE=$SERVER/opendap/data/nc/3fnoc.nc !!
!$ ncdump -c $REMOTE!

!
•  Copy 3 coordinate variables out of the file 	
	

!$ nccopy $REMOTE’?’lat,lon,time coords.nc!
!
•  Copy subarray of variable u out of the file into a new netCDF file	

!$ nccopy $REMOTE’?’u[2:5][0:4][0:5] u.nc	

	
$ ncdump u.nc!
!

Try compression with nccopy utility	

•  Compress variables in a test file, testrh.nc, by using nccopy. Then check if

adding the shuffling option improved compression:	

	
$ nccopy -d1 testeh.nc testrhd1.nc # compress data, level 1!
!$ nccopy -d1 -s testrh.nc testrhd1s.nc # shuffle and compress data!
!$ ls -l testrh.nc testrhd1.nc testrhd1s.nc # check results!

!

Join the netCDF community	

•  Why participate?	

o  To help extend netCDF to meet an important need.	

o  To fix a bug that affects you or your users.	

o  To help the geosciences community.	

•  How to collaborate?	

o  Join netcdfgroup@unidata.ucar.edu mailing list	

o  Use Unidata netCDF GitHub repository.	

o  Build and test release candidates, provide feedback.	

o  Contribute code, tests, and documentation

improvements.	

o  Suggest new features.	

o  Also see netCDF Jira site for current open issues.	

