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D Programming interfaces to netCDF data

umidara

All netCDF APIs are currently implemented over either the C or
Java library.

* NetCDF Cinterface was first API, developed in 1988
e Fortran-77 interface added as a thin layer over C library

e |nterfaces for Java, Perl, and first C++ library developed at
Unidata

e Collaborated on a Fortran-90 interface

e QOther contributed C-based interfaces include Python, Perl,
Ruby, NCL, Matlab, IDL, R, Objective C, Ada, and new C++ API
for netCDF-4

e Java is most advanced netCDF API, best for use on servers
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The C API

e Core library on which all non-Java APlIs are built

e Strengths:
Well-documented: C Users Guide, man pages for reference
Comprehensively tested when library built from source
Good support: answers for many questions available
Many users: one of the most widely used netCDF interfaces.

Type-safe interfaces avoid “void *” arguments and catch compile-
time errors

The ncgen utility can generate C code from CDL
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B C example for reading data
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#include <netcdf.h>

/* Handle errors by printing an error message and exiting */
#define ERR(e) {printf("Error: %s\n", nc_strerror(e)); exit (ERRCODE) ;}

/* netCDF file ID and variable ID */

int ncid, varid;

/* array into which we will read values of 2D netCDF variable */
double rh array[NLAT] [NLON] ;

/* Open file with read-only access, indicated by NC_ NOWRITE flag */
if ((retval = nc_open("foo.nc", NC NOWRITE, &ncid)))
ERR (retval) ;
/* Get the id of the variable named "rh" */
if ((retval = nc_ing varid(ncid, "rh", &varid)))
ERR (retval) ;
/* Read variable "rh" as doubles, rh array must be big enough! */
if ((retval = nc_get var double(ncid, varid, &rh array[0][0])))
ERR (retval) ;
/* Close the file, freeing all resources. */
if ((retval = nc close(ncid)))
ERR (retval) ;
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The Fortran-90 API

Provides current Fortran support for modelers and scientists
e Strengths:

Well-documented: Fortran-90 Users Guide, man pages for reference
Overloads var_put and var_get functions for all types and shapes
Optional arguments simplify API

Many users: one of the most widely used netCDF interfaces

e QOther characteristics

— Currently implemented in Fortran-90 as thin layer on Fortran-77
library

- No ncgen utility support (yet) for generating F90 code from CDL
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™ Fortran-90 AP| example for reading data
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use netcdf
! check (status) function prints error message and exits

netCDF ID for the file and data variable

integer :: ncid, varid
! array into which we will read values of 2D netCDF variable
double rh array[NLON] [NLAT] ! reversed index order from CDL

! Open file with read-only access, indicated by NF90 NOWRITE flag
call check( nf90 open("foo.nc", NF90 NOWRITE, ncid) )

! Get the id of the variable named "rh"
call check( nf90 ing varid(ncid, "rh", wvarid) )

! Read whole variable "rh" as double, rh array must be big enough!
call check( nf90 get var(ncid, varid, rh array) )

! Close the file, freeing all resources.
call check( nf90 close(ncid) )
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D Language independence
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* The netCDF data model and format are language-
independent.

— Data written from any language interface can be read from
any other language interface

e Fortran APl uses Fortran dimension row-major order,
1-based indexing

e Unlike netCDF, CDL is not quite language neutral

variables: — ! time slice
float rh(time, lat, lon) ; real rh(lon, lat) ;
CDL Fortran
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Equivalent examples from various APls

* Examples of complete sample programs for writing
and reading netCDF data from various language
interfaces are available from the netCDF program

examples page http://www.unidata.ucar.edu/netcdf/
examples/programs/

Fortran-77

MATLAB

p AP
l1 ‘
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D Java netCDF library architecture
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C netCDF library architecture
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Remote access and
OPeNDAP
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oD Alternatives for remote data access
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e Whole file access
— ftp, scp, sftp, http for “small” (< 10 GB) files
— tar for directories

— gridFTP or Globus Online for large files: fast,
parallel, requires certificate

e Subset access

— OPeNDAP (open network data access protocol)

— Open Geospatial Consortium services: WCS, WMS,
WES, ...

— Database queries
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B When is subset access important?
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* For remote accesses to small parts of large files
— A few variables out of many
— A small geographic region from a global dataset
— A small time range from a long time series

* When visualizing or analyzing data subsets
— One 2D level of atmosphere or ocean

— One cross section of multidimensional data

* When files are archived at a granularity too large
for use or downloading

Thursday, April 14, 2011



o What are ‘OpeNDAP and DAP?
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 DAP is a widely supported data access protocol for
accessing remote science data over http

 The standard and reference client/server software are
maintained by the OPeNDAP organization

http://www.opendap.org/

* DAP was designed for accessing a wide variety of data
sources and formats

o “DAP” and “OPeNDAP” are often used
interchangeably
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D OPeNDAP and netCDF
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e Unidata has merged OPeNDAP client access into both
Java- and C-based netCDF libraries.

e This supports transparent remote access to DAP Data
Servers through the netCDF API.

* Remote access allows any application linked to the
netCDF library to retrieve subsets of data stored on
DAP servers across the Internet.

* Only the minimal amount of needed data will be
accessed

— DAP can be much faster than whole file access, such
as FTP

NetCDF for developers 17
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D DAP client-server architecture
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* DAP data access is analogous to accessing a web
page through a web browser

URL Request
Web > Web
Browser Server
HTML (Web Page)
Response
DAP Client
e netCDF
pplication | ipra
Code Y | (DAP)URL Request _  DAP
(e.g. DAP Server
ncdump)  library DAP Formatted
) Data Response
il 11, 2011 NetCDF for developers 18
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f) Specifying a DAP data source
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Use a URL that refers to the DAP server containing the data

Used in place of a file name in application or netCDF API call

Example for whole file: nttp://test.opendap.ora/opendap/data/nc/3fnoc.nc

Example for 3 variables out of file

http://test.opendap.org/opendap/data/nc/3fnoc.nc?lat,lon,time

Example for subarray of one variable

http://test.opendap.org/opendap/data/nc/3fnoc.nc?2u[2:5][0:4][0:5]

When used in command-line, URL should usually be quoted:

ncdump 'http://test.opendap.org/opendap/data/nc/3fnoc.nc?u’

DAP Client test.opendap.org variousformats!
netCDF

Application | Jibra
Code A (DAP) URL Request > DAP I
(e,0. DAP Server 4

ncdump) Iibrary‘ DAP ../data/nc/3fnoc.nc
Data Response
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Chunking and
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Motivation for chunking

* Problem: reading a small amount of data along the
wrong direction in a multidimensional variable can
be very slow:

y

index order
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Motivation for chunking

* Solution: storing the data in "chunks" along each
dimension in a multidimensional variable makes
access along any dimension similar

IL//II?I/I//II |

|
y ARy 4

| |
Z

y

index order
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D Example: accessing cross-sections
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* “Toy” example: accessing a 6 x 6 x 8 array on a system ]
with small disk blocks W
=~

e If array is stored contiguously, then (ignoring caching) ] /
number of disk accesses needed to

— read a single x,y 2D cross-section: 1

— read a single x,z or y,z 2D cross-section: 8

— read whole array using x,y slices: 8

— read whole array using x,z or y,z slices: 48
— read a single 1D vector along x or y axis: 1

— read a single 1D vector along z axis: 8

— read whole array using 1D vectors along x or y axis: 8
- read whole array using 1D vectors along z axis: 288

e Contiguous same as 6 x 6 x 1 chunks, try 3 x 3 x 4 chunks ...

2011 NetCDF for developers 23
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e Same data: 6 x 6 x 8 array

e |f array is stored using 3 x 3 x 4 chunks, then number
of disk accesses needed to

11, 2011

Accessing cross-sections with chunking

read a single x,y 2D cross-section: 4

read a single x,z or y,z 2D cross-section: 4

read whole array using x,y slices: 32

read whole array using x,z or y,z slices: 32

read a single 1D vector along x or y axis: 2

read a single 1D vector along z axis: 2

read whole array using 1D vectors on x or y axis: 96

read whole array using 1D vectors along z axis: 72

NetCDF for developers

Thursday, April 14, 2011

24




D Accessing cross-sections with chunking
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e Same data: 6 x 6 x 8 array

Access Contiguous Chunking
(disk accesses) | (disk accesses)

2D x,y cross-section 1 4

2D x,z or y,z cross-section 8 -4

3D array using x,y slices 8 32

3D array using x,z or y,z slices

1D vector along x or y axis
1D vector along z axis
3D array using x or y vectors

3D array using z vectors
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%) Actual timings accessing cross-sections with chunking
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° 432 x432 x 432 array of floats with chunk sizes of 36 x 36 x 36

Access Contiguous | Chunking | Slowdown
(seconds) (seconds) | or speedup

2D x,y cross-section write 0.559 : 3.5 x slower

2D x,z cross-section write 18.1 1.5 12 x faster

2D y,z cross-section write 223 9.55 23 x faster

2D x,y cross-section read 0.353 1.06 3 x slower

2D x,z cross-section read 6.22 1.45 4.3 x faster

2D vy,z cross-section read 77.1 7.68 10 x faster

e Fast accesses slow down a little, slow accesses speed up a lot
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Benefits of chunking

- As a general principle, organize data for readers, not writer
— Chunking should match most common access patterns

— Chunking may also improve compression

- Chunked storage can provide significant performance
benefits

Allows efficient access to multidimensional data along multiple
axes

Default chunking parameters make access performance similar
along different dimensions

In netCDF-4 (with HDF5 storage) variables may be chunked
independently with custom chunk sizes

Can improve I/O performance for large arrays and compressed
variables
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B Compression: why not just use zip?
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e Unix utilities are available for compressing whole
files, e.g. bzip2, gzip, zip, compress. Why not just use
one of those?

— Accessing data from a compressed file requires
uncompressing whole file first

— So accessing a small amount of data from a large
compressed file can be very slow

— Changing one value in a compressed file requires
uncompressing it, writing the new value, and
recompressing it

e Solution: chunking and per-variable compression

NetCDF for developers 27
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B Compression in netCDF-4
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e Readers access data from compressed variables transparently,
without needing to know they are compressed

e Compressed variables are stored with chunked storage
e Each chunk is compressed or uncompressed independently

* Permits efficient access to small subsets of a large compressed
variable without uncompressing entire variable

e Per-variable chunk caches keep recently accessed chunks
uncompressed

* Better compression can be achieved with custom chunking.

— example: horizontal layers of the atmosphere for a variable
that is fairly uniform within a layer, such as temperature

— Per-variable compression means variables may be
compressed independently
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o Benefits of netCDF-4 classic model format
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e What is the netCDF-4 classic model format?

— Uses classic data model for simplicity, compatibility

— Uses netCDF-4 (HDF5-based) storage for performance
features

e This format has become popular for several reasons:
— Easy to use: specify format only in netCDF create call
— Features like chunking, compression available to writers

— Data written in this format can be read transparently by old
programs, after relinking to new library

e Supports easier transition from netCDF-3

Thursday, April 14, 2011
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Parallel 1/0O
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Why parallel I/0?

e Gets around some input/output bottlenecks in
multi-processor systems

» Lets each processor read and write data
independently

T

PO P1

NetCDF

Parallel File System Parallel Flle System

(a) (b)
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What is parallel I/0?

* A parallel I/O file system is required for much
improvement in 1/0 throughput

* NetCDF-4 works with the Message Passing
Interface, version 2 (MPI2)

e Any supercomputer will have an MPI2 library
* For netCDF testing we use the MPICH2 library

April 11, 2011 NetCDF for developers
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D The Argonne parallel-netCDF package
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e parallel-netcdf (formerly "pnetcdf") from Argonne Labs and
Northwestern University can be used for parallel I/O with classic
netCDF data.

* Not Unidata software, but well-tested and maintained

e Uses MPI I/O to perform parallel I/O, a complete rewrite of the
core C library using MPI I/O

* |mplements different APl from netCDF, making portability with
other netCDF code a problem

e However, netCDF-4 can now use the parallel netCDF library for
classic and 64-bit offset files using parallel 1/0

e Use the NC_PNETCDF flag (or NFOO_PNETCDF for Fortran):

if (nc_create par(file name, NC PNETCDF, mpicomm, info, &ncid))
ERR;
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D Parallel 1/0O in netCDF-4
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e Provides the parallel I/O features of HDF5 with a netCDF API

e Allows n processes on m processors to read and write netCDF data,
where n and m are integers usually < 10K

e Requires a library implementing MPI2, for example MPICH2
* HDF5 must be built with --enable-parallel

e Typically CC environment variable is set to mpicc, and FC to mpifc.
You must build HDF5 and netCDF-4 with same compiler and compiler
options.

* The netCDF configure script will detect the parallel capability of HDF5
and build the netCDF-4 parallel I/O features automatically.

e For parallel applications you must include "netcdf par.h" before
netcdf.h.

e Parallel tests output can tell you a lot about your parallel platform.
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D Using parallel I/O in netCDF-4
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* Special nc_create _par and nc_open_par functions are used to
create/open a netCDF file.

* The files they open are normal NetCDF-4/HDFS5 files, but these
functions also take MPI parameters.

e Parallel access is not a characteristic of data file, but the way it
was opened.

external int
nc_create_ par(const char *path, int cmode,
MPI Comm comm, MPI Info info, int *ncidp);

external int
nc_open par (const char *path, int mode,
MPI Comm comm, MPI Info info, int *ncidp);
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D Collective and independent operations
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* Some netCDF operations are collective (must be done by all
processes at the same time)

e Others are independent (can be done by any process at any
time)
* All netCDF metadata writing operations are collective. That is,

all creation of groups, types, variables, dimensions, or
attributes.

e Data reads and writes may be independent (the default) or
collective.

* To make writes to a variable collective, call the

if( nc_var par access(ncid, varid, NC_COLLECTIVE) )
ERR;
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o Conclusion
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» Data providers may begin to use compression/chunking with confidence
that most users and software can read it transparently, after relinking
with netCDF-4

* Developers may adapt software to netCDF-4 format by relinking

e Developers may adapt software to enhanced data model incrementally,
with examples that such adaptation is practical

e Upgrading software to make use of higher-level abstractions of netCDF-4
enhanced data model has significant benefits

— Data providers can use more natural representation of complex data
semantics

— More natural conventions become possible
— End users can access other types of data through netCDF APIs

* As we keep pushing common tasks into libraries, scientists can focus on
doing science instead of data management
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Thank you!
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