Tn,’v-

Umdata SR ' vﬁ‘?

> : 3
P h ing data selﬁ‘ces, tools, & c;bennfmstmcture leac ershlp : -
tl_mt advance Eanqg)stejn science, e enhance educatlonal opf. rjnnx_gs & broaden particx

4__

NetCDF for Developers and
Data Providers

Russ Rew, UCAR Unidata
ICTP Advanced School on High Performance and Grid Computing
14 April 2011

UCAR 5%Am oD

uridara

Thursday, April 14, 2011

Overview

Application Programming Interfaces (API’s)
Remote access and OPeNDAP

Chunking and compression
Parallel I/O

April 11, 2011
Thursday, April 14, 2011

NetCDF for developers

Application
Programming
Interfaces (API’s)

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

D Programming interfaces to netCDF data

umidara

All netCDF APIs are currently implemented over either the C or
Java library.

* NetCDF Cinterface was first API, developed in 1988
e Fortran-77 interface added as a thin layer over C library

e |nterfaces for Java, Perl, and first C++ library developed at
Unidata

e Collaborated on a Fortran-90 interface

e QOther contributed C-based interfaces include Python, Perl,
Ruby, NCL, Matlab, IDL, R, Objective C, Ada, and new C++ API
for netCDF-4

e Java is most advanced netCDF API, best for use on servers

11 NetCDF for developers
Thursday, April 14, 2011

The C API

e Core library on which all non-Java APlIs are built

e Strengths:
Well-documented: C Users Guide, man pages for reference
Comprehensively tested when library built from source
Good support: answers for many questions available
Many users: one of the most widely used netCDF interfaces.

Type-safe interfaces avoid “void *” arguments and catch compile-
time errors

The ncgen utility can generate C code from CDL

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

B C example for reading data

umidara

#include <netcdf.h>

/* Handle errors by printing an error message and exiting */
#define ERR(e) {printf("Error: %s\n", nc_strerror(e)); exit (ERRCODE) ;}

/* netCDF file ID and variable ID */

int ncid, varid;

/* array into which we will read values of 2D netCDF variable */
double rh array[NLAT] [NLON] ;

/* Open file with read-only access, indicated by NC_ NOWRITE flag */
if ((retval = nc_open("foo.nc", NC NOWRITE, &ncid)))
ERR (retval) ;
/* Get the id of the variable named "rh" */
if ((retval = nc_ing varid(ncid, "rh", &varid)))
ERR (retval) ;
/* Read variable "rh" as doubles, rh array must be big enough! */
if ((retval = nc_get var double(ncid, varid, &rh array[0][0])))
ERR (retval) ;
/* Close the file, freeing all resources. */
if ((retval = nc close(ncid)))
ERR (retval) ;

NetCDF for developers 7

Thursday, April 14, 2011

The Fortran-90 API

Provides current Fortran support for modelers and scientists
e Strengths:

Well-documented: Fortran-90 Users Guide, man pages for reference
Overloads var_put and var_get functions for all types and shapes
Optional arguments simplify API

Many users: one of the most widely used netCDF interfaces

e QOther characteristics

— Currently implemented in Fortran-90 as thin layer on Fortran-77
library

- No ncgen utility support (yet) for generating F90 code from CDL

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

™ Fortran-90 AP| example for reading data

umidara
use netcdf
! check (status) function prints error message and exits

netCDF ID for the file and data variable

integer :: ncid, varid
! array into which we will read values of 2D netCDF variable
double rh array[NLON] [NLAT] ! reversed index order from CDL

! Open file with read-only access, indicated by NF90 NOWRITE flag
call check(nf90 open("foo.nc", NF90 NOWRITE, ncid))

! Get the id of the variable named "rh"
call check(nf90 ing varid(ncid, "rh", wvarid))

! Read whole variable "rh" as double, rh array must be big enough!
call check(nf90 get var(ncid, varid, rh array))

! Close the file, freeing all resources.
call check(nf90 close(ncid))

NetCDF for developers 9

Thursday, April 14, 2011

D Language independence

umidara

* The netCDF data model and format are language-
independent.

— Data written from any language interface can be read from
any other language interface

e Fortran APl uses Fortran dimension row-major order,
1-based indexing

e Unlike netCDF, CDL is not quite language neutral

variables: — ! time slice
float rh(time, lat, lon) ; real rh(lon, lat) ;
CDL Fortran

1, 2011 NetCDF for developers 10
Thursday, April 14, 2011

Equivalent examples from various APls

* Examples of complete sample programs for writing
and reading netCDF data from various language
interfaces are available from the netCDF program

examples page http://www.unidata.ucar.edu/netcdf/
examples/programs/

Fortran-77

MATLAB

p AP
l1 ‘

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

http://www.unidata.ucar.edu/netcdf/examples/programs/
http://www.unidata.ucar.edu/netcdf/examples/programs/
http://www.unidata.ucar.edu/netcdf/examples/programs/
http://www.unidata.ucar.edu/netcdf/examples/programs/

D Java netCDF library architecture

umidara

Application

cientific Feature Types |€¢———

v

Datatype Adapter

v

NetcdfDataset

v

CoordSystem Builder

v v

NetcdfFile
THREDDS +

¢ I/O service provider

OPeNDAP NetCDF-3 | g— | NIDS

Catalog.xml | W

NetCDF-4 — GRrIB

Nexrad > DMSP

4—
HDF5 <« o
«—

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

C netCDF library architecture

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

Remote access and
OPeNDAP

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

oD Alternatives for remote data access

umidara

e Whole file access
— ftp, scp, sftp, http for “small” (< 10 GB) files
— tar for directories

— gridFTP or Globus Online for large files: fast,
parallel, requires certificate

e Subset access

— OPeNDAP (open network data access protocol)

— Open Geospatial Consortium services: WCS, WMS,
WES, ...

— Database queries

1, 2011 NetCDF for developers 14
Thursday, April 14, 2011

B When is subset access important?

umidara

* For remote accesses to small parts of large files
— A few variables out of many
— A small geographic region from a global dataset
— A small time range from a long time series

* When visualizing or analyzing data subsets
— One 2D level of atmosphere or ocean

— One cross section of multidimensional data

* When files are archived at a granularity too large
for use or downloading

Thursday, April 14, 2011

o What are ‘OpeNDAP and DAP?

umidara

 DAP is a widely supported data access protocol for
accessing remote science data over http

 The standard and reference client/server software are
maintained by the OPeNDAP organization

http://www.opendap.org/

* DAP was designed for accessing a wide variety of data
sources and formats

o “DAP” and “OPeNDAP” are often used
interchangeably

2011 NetCDF for developers 16
Thursday, April 14, 2011

http://www.opendap.org/
http://www.opendap.org/

D OPeNDAP and netCDF

umidara

e Unidata has merged OPeNDAP client access into both
Java- and C-based netCDF libraries.

e This supports transparent remote access to DAP Data
Servers through the netCDF API.

* Remote access allows any application linked to the
netCDF library to retrieve subsets of data stored on
DAP servers across the Internet.

* Only the minimal amount of needed data will be
accessed

— DAP can be much faster than whole file access, such
as FTP

NetCDF for developers 17

Thursday, April 14, 2011

D DAP client-server architecture

umidara

* DAP data access is analogous to accessing a web
page through a web browser

URL Request
Web > Web
Browser Server
HTML (Web Page)
Response
DAP Client
e netCDF
pplication | ipra
Code Y | (DAP)URL Request _ DAP
(e.g. DAP Server
ncdump) library DAP Formatted
) Data Response
il 11, 2011 NetCDF for developers 18

Thursday, April 14, 2011

f) Specifying a DAP data source

umidara

Use a URL that refers to the DAP server containing the data

Used in place of a file name in application or netCDF API call

Example for whole file: nttp://test.opendap.ora/opendap/data/nc/3fnoc.nc

Example for 3 variables out of file

http://test.opendap.org/opendap/data/nc/3fnoc.nc?lat,lon,time

Example for subarray of one variable

http://test.opendap.org/opendap/data/nc/3fnoc.nc?2u[2:5][0:4][0:5]

When used in command-line, URL should usually be quoted:

ncdump 'http://test.opendap.org/opendap/data/nc/3fnoc.nc?u’

DAP Client test.opendap.org variousformats!
netCDF

Application | Jibra
Code A (DAP) URL Request > DAP I
(e,0. DAP Server 4

ncdump) Iibrary‘ DAP ../data/nc/3fnoc.nc
Data Response

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc?u,lat,lon,time
http://test.opendap.org/opendap/data/nc/3fnoc.nc?u,lat,lon,time
http://test.opendap.org/opendap/data/nc/3fnoc.nc?u,lat,lon,time
http://test.opendap.org/opendap/data/nc/3fnoc.nc?u,lat,lon,time
http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc
http://test.opendap.org/opendap/data/nc/3fnoc.nc

Chunking and
compression

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

Motivation for chunking

* Problem: reading a small amount of data along the
wrong direction in a multidimensional variable can
be very slow:

y

index order

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

Motivation for chunking

* Solution: storing the data in "chunks" along each
dimension in a multidimensional variable makes
access along any dimension similar

IL//II?I/I//II |

|
y ARy 4

| |
Z

y

index order

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

D Example: accessing cross-sections

umidara

* “Toy” example: accessing a 6 x 6 x 8 array on a system]
with small disk blocks W
=~

e If array is stored contiguously, then (ignoring caching)] /
number of disk accesses needed to

— read a single x,y 2D cross-section: 1

— read a single x,z or y,z 2D cross-section: 8

— read whole array using x,y slices: 8

— read whole array using x,z or y,z slices: 48
— read a single 1D vector along x or y axis: 1

— read a single 1D vector along z axis: 8

— read whole array using 1D vectors along x or y axis: 8
- read whole array using 1D vectors along z axis: 288

e Contiguous same as 6 x 6 x 1 chunks, try 3 x 3 x 4 chunks ...

2011 NetCDF for developers 23
Thursday, April 14, 2011

F 2
/

g
umidara

e Same data: 6 x 6 x 8 array

e |f array is stored using 3 x 3 x 4 chunks, then number
of disk accesses needed to

11, 2011

Accessing cross-sections with chunking

read a single x,y 2D cross-section: 4

read a single x,z or y,z 2D cross-section: 4

read whole array using x,y slices: 32

read whole array using x,z or y,z slices: 32

read a single 1D vector along x or y axis: 2

read a single 1D vector along z axis: 2

read whole array using 1D vectors on x or y axis: 96

read whole array using 1D vectors along z axis: 72

NetCDF for developers

Thursday, April 14, 2011

24

D Accessing cross-sections with chunking

umidara

e Same data: 6 x 6 x 8 array

Access Contiguous Chunking
(disk accesses) | (disk accesses)

2D x,y cross-section 1 4

2D x,z or y,z cross-section 8 -4

3D array using x,y slices 8 32

3D array using x,z or y,z slices

1D vector along x or y axis
1D vector along z axis
3D array using x or y vectors

3D array using z vectors

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

%) Actual timings accessing cross-sections with chunking

umidara

° 432 x432 x 432 array of floats with chunk sizes of 36 x 36 x 36

Access Contiguous | Chunking | Slowdown
(seconds) (seconds) | or speedup

2D x,y cross-section write 0.559 : 3.5 x slower

2D x,z cross-section write 18.1 1.5 12 x faster

2D y,z cross-section write 223 9.55 23 x faster

2D x,y cross-section read 0.353 1.06 3 x slower

2D x,z cross-section read 6.22 1.45 4.3 x faster

2D vy,z cross-section read 77.1 7.68 10 x faster

e Fast accesses slow down a little, slow accesses speed up a lot

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

D

umidara

Benefits of chunking

- As a general principle, organize data for readers, not writer
— Chunking should match most common access patterns

— Chunking may also improve compression

- Chunked storage can provide significant performance
benefits

Allows efficient access to multidimensional data along multiple
axes

Default chunking parameters make access performance similar
along different dimensions

In netCDF-4 (with HDF5 storage) variables may be chunked
independently with custom chunk sizes

Can improve I/O performance for large arrays and compressed
variables

Thursday, April 14, 2011

B Compression: why not just use zip?

umidara

e Unix utilities are available for compressing whole
files, e.g. bzip2, gzip, zip, compress. Why not just use
one of those?

— Accessing data from a compressed file requires
uncompressing whole file first

— So accessing a small amount of data from a large
compressed file can be very slow

— Changing one value in a compressed file requires
uncompressing it, writing the new value, and
recompressing it

e Solution: chunking and per-variable compression

NetCDF for developers 27

Thursday, April 14, 2011

B Compression in netCDF-4

umidara

e Readers access data from compressed variables transparently,
without needing to know they are compressed

e Compressed variables are stored with chunked storage
e Each chunk is compressed or uncompressed independently

* Permits efficient access to small subsets of a large compressed
variable without uncompressing entire variable

e Per-variable chunk caches keep recently accessed chunks
uncompressed

* Better compression can be achieved with custom chunking.

— example: horizontal layers of the atmosphere for a variable
that is fairly uniform within a layer, such as temperature

— Per-variable compression means variables may be
compressed independently

NetCDF for developers 28

Thursday, April 14, 2011

o Benefits of netCDF-4 classic model format

umidara

e What is the netCDF-4 classic model format?

— Uses classic data model for simplicity, compatibility

— Uses netCDF-4 (HDF5-based) storage for performance
features

e This format has become popular for several reasons:
— Easy to use: specify format only in netCDF create call
— Features like chunking, compression available to writers

— Data written in this format can be read transparently by old
programs, after relinking to new library

e Supports easier transition from netCDF-3

Thursday, April 14, 2011

&)

urmidara

Parallel 1/0O

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

Why parallel I/0?

e Gets around some input/output bottlenecks in
multi-processor systems

» Lets each processor read and write data
independently

T

PO P1

NetCDF

Parallel File System Parallel Flle System

(a) (b)

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

What is parallel I/0?

* A parallel I/O file system is required for much
improvement in 1/0 throughput

* NetCDF-4 works with the Message Passing
Interface, version 2 (MPI2)

e Any supercomputer will have an MPI2 library
* For netCDF testing we use the MPICH2 library

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/

D The Argonne parallel-netCDF package

umidara

e parallel-netcdf (formerly "pnetcdf") from Argonne Labs and
Northwestern University can be used for parallel I/O with classic
netCDF data.

* Not Unidata software, but well-tested and maintained

e Uses MPI I/O to perform parallel I/O, a complete rewrite of the
core C library using MPI I/O

* |mplements different APl from netCDF, making portability with
other netCDF code a problem

e However, netCDF-4 can now use the parallel netCDF library for
classic and 64-bit offset files using parallel 1/0

e Use the NC_PNETCDF flag (or NFOO_PNETCDF for Fortran):

if (nc_create par(file name, NC PNETCDF, mpicomm, info, &ncid))
ERR;

NetCDF for developers 33

Thursday, April 14, 2011

http://trac.mcs.anl.gov/projects/parallel-netcdf
http://trac.mcs.anl.gov/projects/parallel-netcdf

D Parallel 1/0O in netCDF-4

umidara

e Provides the parallel I/O features of HDF5 with a netCDF API

e Allows n processes on m processors to read and write netCDF data,
where n and m are integers usually < 10K

e Requires a library implementing MPI2, for example MPICH2
* HDF5 must be built with --enable-parallel

e Typically CC environment variable is set to mpicc, and FC to mpifc.
You must build HDF5 and netCDF-4 with same compiler and compiler
options.

* The netCDF configure script will detect the parallel capability of HDF5
and build the netCDF-4 parallel I/O features automatically.

e For parallel applications you must include "netcdf par.h" before
netcdf.h.

e Parallel tests output can tell you a lot about your parallel platform.

Thursday, April 14, 2011

D Using parallel I/O in netCDF-4

umidara

* Special nc_create _par and nc_open_par functions are used to
create/open a netCDF file.

* The files they open are normal NetCDF-4/HDFS5 files, but these
functions also take MPI parameters.

e Parallel access is not a characteristic of data file, but the way it
was opened.

external int
nc_create_ par(const char *path, int cmode,
MPI Comm comm, MPI Info info, int *ncidp);

external int
nc_open par (const char *path, int mode,
MPI Comm comm, MPI Info info, int *ncidp);

2011 NetCDF for developers 35
Thursday, April 14, 2011

D Collective and independent operations

umidara

* Some netCDF operations are collective (must be done by all
processes at the same time)

e Others are independent (can be done by any process at any
time)
* All netCDF metadata writing operations are collective. That is,

all creation of groups, types, variables, dimensions, or
attributes.

e Data reads and writes may be independent (the default) or
collective.

* To make writes to a variable collective, call the

if(nc_var par access(ncid, varid, NC_COLLECTIVE))
ERR;

11 NetCDF for developers 36
Thursday, April 14, 2011

o Conclusion

umidara

» Data providers may begin to use compression/chunking with confidence
that most users and software can read it transparently, after relinking
with netCDF-4

* Developers may adapt software to netCDF-4 format by relinking

e Developers may adapt software to enhanced data model incrementally,
with examples that such adaptation is practical

e Upgrading software to make use of higher-level abstractions of netCDF-4
enhanced data model has significant benefits

— Data providers can use more natural representation of complex data
semantics

— More natural conventions become possible
— End users can access other types of data through netCDF APIs

* As we keep pushing common tasks into libraries, scientists can focus on
doing science instead of data management

Thursday, April 14, 2011

i
Ca

umidara

Thank you!

April 11, 2011 NetCDF for developers
Thursday, April 14, 2011

