
Developing Conventions for
netCDF-4

Russ Rew, UCAR Unidata
June 11, 2007

GO-ESSP

Overview

• Two levels of conventions: NUG and CF
• “Classic” and extended netCDF-4 data

models
• Data models and data formats
• Potential uses and examples of netCDF-4

data model features
• CF conventions issues
• Benefits of using netCDF-4 format but classic

data model
• Recommendations and conclusions

Background: netCDF and Conventions

• Purpose of conventions
– To capture meaning in data, intent of data provider
– To foster interoperability

• NetCDF User Guide conventions
– Concepts: simple coordinate variables, …
– Attribute based: units, Conventions, …

• Climate and Forecast (CF) conventions
– Concepts: generalized coordinates, …
– Models relationships among variables
– Standard names
– Attribute based

Classic NetCDF Data Model

Variables and attributes
have one of six primitive

data types.

DataType

char
byte
short
int

float
double

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

File
 location: Filename
 create(), open(), …

A file has named variables, dimensions, and attributes. A
variable may also have attributes. Variables may share

dimensions, indicating a common grid. One dimension may
be of unlimited length.

A file has a top-level unnamed group. Each group may contain
one or more named subgroups, user-defined types, variables,
dimensions, and attributes. Variables also have attributes.

Variables may share dimensions, indicating a common grid. One
or more dimensions may be of unlimited length.

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

Group
 name: String

File
 location: Filename
 create(), open(), …

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.

DataType

PrimitiveType
char
byte
short
int

int64
float

double
unsigned byte
unsigned short
unsigned int

unsigned int64
string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

NetCDF-4 Data Model

Some Limitations of Classic NetCDF
Data Model

• Little support for data structures, just
multidimensional arrays and lists

• No “ragged arrays” or nested structures
• Only one shared unlimited dimension for appending

new data efficiently
• Flat name space for dimensions and variables
• Character arrays rather than strings
• Small set of numeric types
• Variable size constraints, packing instead of

compression, inefficient schema additions, …

NetCDF-4 Features for Data Providers

Data model provides:
• Groups for nested

scopes
• User-defined

enumeration types
• User-defined compound

types
• User-defined variable-

length types
• Multiple unlimited

dimensions
• String type
• Additional numeric types

HDF5-based format provides:
• Per-variable compression
• Per-variable

multidimensional tiling
(chunking)

• Liberal variable size
constraints

• Reader-makes-right
conversion

• Efficient dynamic schema
additions

• Parallel I/O

NetCDF Data Models and File Formats

1. Use simple classic data model and format
2. Use richer netCDF-4 data model and

netCDF-4 format

and a third less obvious choice:
3. Use classic data model with the netCDF-4

format

Data providers writing new netCDF data have
two obvious alternatives:

“Classic model” netCDF-4 files

• Supported by netCDF-4 library with file
creation flag

• Ensures data can be read by netCDF-3
software (relinked to netCDF-4 library)

• Compatible with current conventions
• Writers get benefits of new format, but not

data model
• Readers can

– access compressed or chunked variables
transparently

– get performance benefits of reader-makes-right
– use of HDF5 tools

Is it Time to Adopt NetCDF-4 Data Model?

• C-based netCDF-4 software still only in
beta release

• Few netCDF utilities or applications
adapted to full netCDF-4 model yet

• Little experience with netCDF-4 means
useful conventions still in early stages

• Significant performance improvements
available without netCDF-4 data model

NetCDF-4 Data Model Features:
Examples and Potential Uses

• Groups
• Compound types
• Enumerations
• Variable-length types

Example Use of Groups
Data for named geographical regions:

group Europe {
 group France {
 dimensions: time = unlimited, stations = 47;
 variables: float temperature(time, stations);
 }
 group England{
 dimensions: time = unlimited, stations = 61;
 variables: float temperature(time, stations);
 }
 group Germany {
 dimensions: time = unlimited, stations = 53;
 variables: float temperature(time, stations);
 }
 …
 dimensions: time = unlimited;
 variables: float average_temperature(time);
}

Potential Uses for Groups

• Factoring out common information
– Containers for data within regions
– Model metadata

• Organizing a large number of variables
• Providing name spaces for multiple uses of

same names for dims, vars, atts
• Modeling large hierarchies
• CF conventions issues

– Ensembles
– Shared structured grids
– Other uses?

types:
 compound wind_vector_t {
 float eastward ;
 float northward ;
 }
dimensions:
 lat = 18 ;
 lon = 36 ;
 pres = 15 ;
 time = 4 ;
variables:
 wind_vector_t gwind(time, pres, lat, lon) ;
 wind:long_name = "geostrophic wind vector" ;
 wind:standard_name = "geostrophic_wind_vector" ;
data:
 gwind = {1, -2.5}, {-1, 2}, {20, 10}, {1.5, 1.5}, ...;

Example Use of Compound Type

Vector quantity, such as wind:

Potential Uses for Compound Types

• Representing vector quantities like wind
• Modeling relational database tuples
• Representing objects with components
• Bundling multiple in situ observations together

(profiles, soundings)
• Providing containers for related values of other user-

defined types (strings, enums, …)
• Representing C structures portably
• CF Conventions issues:

– should type definitions or names be in conventions?
– should member names be part of convention?
– should quantities associated with groups of compound

standard names be represented by compound types?

Drawbacks with Compound Types

• Member fields have type and name, but are
not netCDF variables

• Can’t directly assign attributes to compound
type members
– New proposed convention solves this problem, but

requires new user-defined type for each attribute
• Compound type not as useful for Fortran

developers, member values must be
accessed individually

types:
 compound wind_vector_t {
 float eastward ;
 float northward ;
 }
 compound wv_units_t {
 string eastward ;
 string northward ;
 }
dimensions:
 station = 5;
variables:
 wind_vector_t wind(station) ;
 wv_units_t wind:units = {"m/s", "m/s"} ;
 wind_vector_t wind:_FillValue = {-9999, -9999} ;
data:
 wind = {1, -2.5}, {-1, 2}, {20, 10}, ... ;

Example Convention for Member Attributes

Example Use of Enumerations

Named flag values for improving self-description:
types:
 byte enum cloud_t {
 Clear = 0, Cumulonimbus = 1, Stratus = 2,
 Stratocumulus = 3, Cumulus = 4, Altostratus = 5,
 Nimbostratus = 6, Altocumulus = 7, Missing = 127
 };
dimensions:
 time = unlimited;
variables:
 cloud_t primary_cloud(time);
 cloud_t primary_cloud:_FillValue = Missing;
data:
 primary_cloud = Clear, Stratus, Cumulus, Missing, …;

Potential Uses for Enumerations

• Alternative for using strings with flag_values
and flag_meanings attributes for quantities
such as soil_type, cloud_type, …

• Improving self-description while keeping data
compact

• CF Conventions issues:
– standardize on enum type definitions and

enumeration symbols?
– include enum symbol in standard name table?
– standardize way to store descriptive string for

each enumeration symbol?

Example Use of Variable-Length Type
In situ observations:

 types:
 compound obs_t {
 float pressure ;
 float temperature ;
 float salinity ;
 }
 obs_t observations_t(*) ; // a variable number of observations
 compound sounding_t {
 float latitude ;
 float longitude ;
 int time;
 obs_t obs;
 }
 sounding_t soundings_t(*) ; // a variable number of soundings
 compound track_t {
 string id ;
 string description ;
 soundings_t soundings;
 }
dimensions: tracks = 42;
variables: track_t cruise(tracks);

Potential Uses for Variable-Length Type

• Ragged arrays
• In situ observational data (profiles,

soundings, time series)

Notes on netCDF-4 Variable-Length Types

• Variable length value must be accessed all at
once (e.g. whole row of a ragged array)

• Any base type may be used (including
compound types and oter variable-length
types)

• No associated shared dimension, unlike
multiple unlimited dimensions

• Due to atomic access, using large base types
may not be practical

Recommendations for Data Providers

• Continue using classic data model and
format, if suitable

 CF Principle: Conventions should be developed
only for known issues. Instead of trying to foresee
the future, features are added as required

• Evaluate practicality and benefits of classic
model with netCDF-4 format

• Test and explore uses of extended netCDF-4
data model features

• Help create new netCDF-4 conventions
based on experience with what works

When is NetCDF-4 Data Model Needed?

• If non-classic primitive type is needed
– 64-bit integers for statistical applications
– unsigned bytes, shorts, or ints for wider range
– real strings instead of char arrays

• If making data self-descriptive requires new
user-defined types
– groups
– compound
– variable-length
– enumerations
– nested combinations of types

Three-Stage Chicken and Egg Problem

• Data providers
– Won’t be first to use features not supported by

applications or standardized by conventions
• Application developers

– Won’t expend effort needed to support features
not used by data providers and not standardized
as published conventions

• Convention creators
– Likely to wait until data providers identify needs for

new conventions
– Must consider issues applications developers will

confront to support new conventions

Importance of CF

Ray Pierrehumbert (University of Chicago) had
this to say on realclimate.org:

... I think one mustn't discount a breakthrough of a
technological sort in AR4 though: The number of
model runs exploring more of scenario and
parameter space is vastly increased, and more
importantly, it is available in a coherent archive to
the full research community for the first time. The
amount of good science that will be done with this
archive in the next several years is likely to have a
significant impact on our understanding of climate.

