unidaTa

Making earth science data more accessible:
experience with chunking and compression

Russ Rew
January 2013
93'd Annual AMS Meeting

Austin, Texas

3 UCAR SR55A

What's the Problem?

Time range access Spatial access

\\
*
]

Can large / i . \
multidimensional i i

datasets be / : r T ‘‘‘‘‘‘‘‘ \
organized for fast T / ? 7 : \
and flexible 2 } E A e ——
access? _,'3'? 1] P s
Without multiple / " \
versions of the / : ’ " AN
data, what’s the 8 4 > AN
best you can do? x—> x—>

Conventional storage layout Time range access Spatial access

Time varying fastest Fast Slow

Time varying slowest Slow Fast

-
Goal is to solve
what looks like
a little problem
that becomes
more serious

with ...

[)Aat:

a

NCEP North American Regional Reanalysis
float 200mb_ TMP(time=98128, y=277, x=349)

9.5 billion values

38 GB of data

8.5 GB compressed

time—>

time—>

Contiguous storage with
O time varying fastest

ONNNNN

O time varying slowest G

&

Time varying fastest

Time varying slowest

X—>

0.013 sec
200 sec

. Real data, conventional storage

Y——)

AN

I

180 sec
0.012 sec

*Single file access time averaged over 100 independent queries, after clearing disk caches. 7200 rpm disk.

“ Chunking

ey ey e Storing datain

"chunks" along each

dimensionin a

multidimensional

/- variable makes

access along any

index order chunked dimension similar

* Slows down fast
accesses, but speeds
up slow accesses

* How to choose
shape and size of
chunks for
acceptable
performance?

L L L L

N

L [L [/

Yy NN

A 4

v v \ 4

‘7

unidaTa

Benefits of chunking

Large performance gains are possible with good
choice of chunk shapes and sizes

Benefits of chunking for compression are under-
appreciated

Chunking supports efficiently extending data along
multiple dimensions

So why is use of chunking not widespread?

— Software to rechunk big datasets is available, but defaults
work poorly for some common use cases

— Specific guidance for how to set chunk shapes is lacking

- Importance of chunk shapes

Example: float 200mb_TMP (time=98128, y=277, x=349)

Storage layout, Read time Read horizontal Performance
chunk shapes range slice bias: (slowest /

(seconds) (seconds) fastest)

Contiguous, for time range 0.013 180 14,000

Contiguous, for spatial slices 200 0.012 17,000

Record chunks, 1 x 277 x 349 690 0.007 98,000
Default chunks, 4673 x 12 x 16 1.4 34 24
36 KB chunks, 92 x9 x 11 2.4 1.7 1.4

8 KB chunks, 46 x 6 x 8 1.4 1.1 1.2

unidaTa

Chunk shapes

2-dimensional analog of chunking is inadequate for common
use case of 1D and nD access in an (n+1)-dimensional dataset

In 2D, want chunks to be same shape as data domain to get
same number of chunks in each direction of access

In 1D and nD access, need to divide chunks read per access
equally between 1D and nD domains

For 3D use case example, balancing 1D and 2D accesses:

— Let = number of time, n, = number of y, n, = number of x,
= number of chunks = () / valuesPerChunk

— by v by x chunk shape should be integral, near

by by
More detailed guidance will appear soon in
Unidata’s Developer’s Blog and netCDF documentation

unidaTa

Chunking transparency

Only creators of a dataset need to be concerned with
chunk shapes and sizes

Chunking and compression are invisible to reading
software, except for performance

Per-variable rechunking and compression
implemented in calls to access libraries

Per-dimension rechunking and compression
supported by nccopy or h5repack utilities

unidaTa

Chunking and compression

In using netCDF or HDF5 libraries, a chunk is an
indivisible unit of disk access, compression, and
caching

In general, smaller chunks mean worse compression

Smaller chunks improve access times for compressed
data, due to less computation for uncompression

Benchmark times reported above are for
uncompressed data

Including compression doesn’t change

a

[]
i Chunk size
small chunks large chunks
faster read access slower read access
less compression more compression
slower to create faster to create

e Chunk size should be at least size of a disk block

* Chunk shape is more important than chunk size for balanced
and flexible access in multiple ways

 To re-chunk large datasets, it’s best to have lots of memory

«eara SOMe inadequate chunking advice

- - T .
(#4170 7% || | 2012 Unidata NetCDF Workshop > Chunking and Deflating Data with NetCDF -4

19.1 Choosing Chunksizes

How do you pick chunksizes?

e Choosing good chunksizes depends on the access patterns of your data. Are you trying
to optimize writing, reading, or both? What are the access patterns at I/O bottlenecks?

e Choose chunksizes so that the subsets of data you are accessing fitinto a chunk. That s,
the chunks should be as large, or larger than, the subsets you are reading/writing.

e The chunk cache size must also be adjusted for good performance. The cache must be
large enough to hold at least one chunk.

e Setting a larger cache (for example, big enough to hold tens or hundreds of chunks) will
pay off only if the access patterns support it.

¢ On today's high-performance systems, large amounts of memory are available (both to
the user and as internal hardware caching.) This suggests that chunks and caches
should be large, and programs should take large sips of data.

Oops, | wrote that last year, before this example ...

a

unidaTa

Summary

e By rewriting important datasets using appropriate chunking,
you can tailor their access characteristics to make them more
useful

e This includes structuring model outputs and remote access
observations for flexible and efficient access

e Proper use of chunking can support multiple common query
patterns for large datasets

e Specific guidance for how to choose optimal shapes and sizes
of multidimensional chunks is currently hard to find

e We will soon be making such advice and software
implementing it more widely available

unidaTa

Plans

Blog on details of what was learned, what remains a
mystery

Improve documentation with better guidance for
effective use of chunking and compression

Improve default chunking in netCDF-4 software

Improve nccopy implementation of re-chunking to
support chunking policies, as in NCO software

unidaTa

For more information:

russ@unidata.ucar.edu

unidata.ucar.edu/netcdf/

hdfgroup.org/HDF5/doc/Advanced/Chunking/

Good paper on chunking details:

Optimal chunking of large multidimensional arrays
for data warehousing by E. J. Otoo, Doron Rotem,
and Sridhar Seshadri, 2008

Thank you!

unidaTa

Benchmark details

Disk cache in memory cleared before each run

Measured average clock time to read 100 time
ranges and 100 spatial slices

Each of the 100 time ranges or spatial slices used
independent chunks

Still some speedup from first read to later reads, due
to disk caches not in OS memory

Used local 7200 rpm disk for most tests (44 MB/sec)
SSD was about 4 x faster in sample comparison runs

