
Advances in the NetCDF Data Model,
Format, and Software

Russ Rew
Coauthors: John Caron, Ed Hartnett, Dennis Heimbigner

UCAR Unidata
December 2010

Outline

•  Background

•  Recent advances
–  Refactoring for interoperability
–  Performance improvements
–  Experience adapting software to enhanced data model

–  Standards status

•  State of adoption of netCDF-4

•  Summary

NetCDF: more than a format

•  Data model
–  netCDF-3 classic data model: Variables, Dimensions, Attributes
–  netCDF-4 enhanced data model: adds Groups, user-defined Types

•  File format
–  classic format, 64-bit variant

–  netCDF-4 (HDF5-based) format, classic model variant

•  Application programming interfaces (APIs)
–  C-based APIS: C, Fortran, C++, Python, Perl, Ruby, MATLAB, IDL, …
–  Java API: Java, MATLAB

Together, the data model, file format, and APIs support
the creation, access, and sharing of scientific data

What is netCDF?

1989: portable, self-describing data format, data model,
and software for creation, access, and sharing of
scientific data

1990's: growth of use in ocean and climate models, 3rd-
party software support (NCO, NCL, IDL, MATLAB)

2002: Java version with OPeNDAP client support

2003: NASA funded netCDF-4/HDF5 project; Argonne/
Northwestern parallel netCDF

2004: netCDF-Java plug ins for reading other formats,
NcML aggregation service

2007: netCDF-Java Common Data Model (access to
other formats through netCDF interface)

2008: netCDF-4 C and Fortran library with HDF5
integration, enhanced data model, parallel I/O

2009: “netCDF classic” format standard endorsed

2010: version 4.1.1 - OPeNDAP client support for C/
Fortran libraries; udunits, CF library support;
pnetcdf, HDF4 access

Development Milestones

The netCDF “classic” data model, in UML

Attribute
 name: String
 type: primitive
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: primitive
 values: type[…]

NetCDF Data

Dimension
 name: String
 length: int

0..* 0..* 0..*

0..* 0..*

NetCDF Data has
Variables (eg temperature, pressure)
Attributes (eg units)
Dimensions (eg lat, lon, level, time)

Variables have
Name, shape, type, attributes
N-dimensional array of values

Dimensions have
Name, length
One dimension may grow

Variables may share dimensions
Represents shared coordinates, grids

Six Primitive types
8-bit byte, 16-bit short, 32-bit int,
32-bit float, 64-bit double, arrays of char

NetCDF classic data model

Strengths

 Data model simple to
understand and explain

 Efficient implementation
freely available

 Generic applications easy
to develop

 Representation good for
gridded multidimensional
data

 Shared dimensions useful
for coordinate systems

Limitations

  Small set of primitive types
  Flat data model limited to

multidimensional arrays,
lists, (name, value) pairs

  Flat name space not ideal
for organizing data objects

  Lacks nested structures,
variable-length types,
enumerations

NetCDF classic format

Strengths

 Simple to understand and
explain

 Supported by many
applications

 Standard used in many
archives, data projects

 Mature conventions and
best practices have
evolved

Limitations

  Schema changes may be
costly

  No support for compression
  Only one dimension can

grow efficiently
  Portable representation

favors big-endian platforms

The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named
subgroups, user-defined types, variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a common grid. One

or more dimensions may be of unlimited length. 	

Dimension
 name: String
 length: int

Attribute
 name: String
 type: DataType
 value: type[]

Variable
 name: String
 shape: Dimension[]
 type: DataType
 values: type[…]

Group
 name: String

File

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.	

DataType

PrimitiveType
char
byte

short
int

float
double

unsigned byte
unsigned short

unsigned int
int64

unsigned int64
string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

0..*

1..*

0..*

0..*

0..*

0..*

0..*
0..*

NetCDF enhanced data model

Strengths

 Simpler than HDF5, with similar
representational power

 Adds shared dimensions to HDF5 data
model

 Continues support for existing data,
software, and conventions

 Eliminates netCDF classic model
limitations

 Provides nested structures: hierarchical
groups, recursive data types

 Independent features permit
incremental adaptation, adoption

On the other hand

  More complex than
classic data model

  More effort required to
develop general tools
and applications

  Not yet widely adopted
  Hence, no

comprehensive best
practices and
conventions yet

(Data Model, Format) combinations

•  (Classic, Classic)
–  Mature conventions, best practices (e.g. CF Conventions)
–  Maximum portability, compatibility with old software

•  (Classic, netCDF-4)
–  Requires only relinking instead of modifying software
–  Performance benefits: compression, chunking, larger variables, efficient

schema changes

•  (Enhanced, netCDF-4)
–  Additional data types, including user-defined
–  Advantages in modeling data, including observational data
–  High Performance Computing applications
–  Datasets with large number of data objects
–  Reading other kinds of data (HDF4, HDF5, relational, …)

Recent advances

Standards
Refactoring architecture for interoperability
Performance improvements
Generic tools
Practical experience
Status of netCDF-4 adoption

Standards: from traction to sanction

•  2009-02-05: NASA Earth Science Data Systems (ESDS)
Standards Process Group endorsed netCDF classic and 64-bit
offset formats as appropriate for NASA Earth Science data.

•  2010-03-1: Integrated Ocean Observing System (IOOS) Data
Management and Communications (DMAC) Subsystem
endorsed netCDF with Climate and Forecast (CF)
conventions as a preferred data format.

•  2010-09-27: Steering Committee of the Federal Geographic
Data Committee (FGDC) officially endorsed netCDF as a
Common Encoding Standard.

•  2010-11-05: Open Geospatial Consortium (OGC) began vote on
approving "OGC Network Common Data Form (NetCDF) Core
Encoding Standard version 1.0 ” as a new OGC standard. The
vote closes on January 4, 2011.

NetcdfDataset	

Applica/on	

Scien/fic	
 Feature	
 Types	

OPeNDAP	
 NetCDF-­‐3	

HDF4	

I/O	
 service	
 provider	

GRIB	

GINI	

NIDS	

NetcdfFile	

NetCDF-­‐4	

…	

Nexrad	

DMSP	

CoordSystem	
 Builder	

Datatype	
 Adapter	

NcML

Georeferencing	
 Access	

Index	
 Space	
 Access	

NetCDF-Java/Common Data Model architecture

NcML

C library refactored for interoperability

Application

netCDF

libdispatch

libsrc
(classic)

libsrc4
(netCDF-4)

libncdap3
(OPeNDAP)

libncdap4
(OPeNDAP)

other
handlers

…

Common interfaces and code
factored into a new “dispatch layer”

•  Simpler code
•  Easier maintenance
•  Easier handling of additional

formats & protocols (I/O plugins)

Performance improvements

•  Refactored read code for large speedup on opening netCDF-4
files with compressed or chunked variables

•  Speedup variable and dimension lookup by name

•  Improved memory allocation to reduce memory footprint

•  Reduced memory when parallel I/O used

•  Eliminated memory leaks

•  Improved read code w.r.t. handling a large number of netCDF-4
attributes and variables

•  Applied intelligent caching to remote access for OPeNDAP client

•  Some of these improvements are in upcoming version 4.1.2

Generic tools

•  Adapted generic tools to netCDF-4 enhanced data model
ncdump: converts netCDF data to CDL text form
ncgen: converts CDL text to netCDF data or generates program
nccopy: copies netCDF data, optionally converting to a different form

•  Proved practicality of handling potentially infinite number of
user-defined nested

•  Tool adaptation led to API additions

Experience developing nccopy utility

•  Shows any netCDF-4 data can be accessed through API without
previous or built-in knowledge of user-defined data types

•  Showed netCDF-4 API is adequate for handling arbitrary nesting
of groups and user-defined types

•  Provides evidence that programming generic netCDF-4
applications is not too difficult
–  Classic data model: 500 lines of C
–  Enhanced data model: 900 lines of C

•  Demonstrates usefulness of additional higher-level APIs for tool
developers
–  Iterator APIs for simpler data access
–  APIs that make recursion unnecessary (e.g. visiting groups, comparing

values of a user-defined type)

Practical experience

•  Most experience to date is with netCDF-4 classic
model format
–  uses netCDF-3 classic data model, APIs
–  uses netCDF-4 HDF5-based format
–  provides backward compatibility
–  Enables performance features: compression,

multidimensional tiling (chunking), efficient schema changes,
parallel I/O, …

•  Adoption proceeding smoothly in a 3-step process
1.  Relink applications with netCDF-4 library

2.  Continue use of classic model, netCDF-3 APIs but with netCDF-4
classic model format to get performance benefits

3.  Make use of features of enhanced model, as needed/supported

Last year: game of “chicken”; who goes first?

•  Data producers

–  Waiting until netCDF enhanced data
model features are supported by more
software, development of conventions

•  Developers

–  Waiting for netCDF data that requires
enhanced model and for development of
conventions

•  Convention creators

–  Waiting for data providers and software
developers to identify needs for new
conventions based on usage experience

•  Result: “chicken-and-egg logjam”
–  Delays effective use of advances in scientific

data models for large and complex collections

Status of netCDF-4 adoption: Logjam
appears to be broken

•  NetCDF-4 enhanced model support in language APIs: C, Java
(read only), C++ (beta), Fortran

•  Partial support for netCDF-4 enhanced model also in NCO,
NCL, Panoply, Python API, …

•  NetCDF-4 classic model support in analysis and visualization
apps: IDL, GrADS, CDAT, MATLAB, IDV, NCO, NCL, CDO,
PyNGL, ncview, Panoply, Ferret, OGC WMS and WCS clients

•  Data providers using netCDF-4 classic model format for
transparent compression and chunking: groups in NASA, NOAA,
GFDL, COLA

•  CMIP5 decided to continue using classic model and classic
format (no compression) due to time accessing compressed
data on server

Concluding Remarks
•  Data providers may begin to use compression/chunking with

confidence that most users and software can read it
transparently, after relinking with netCDF-4

•  Developers may adapt software to netCDF-4 format by relinking
•  Developers may adapt software to enhanced data model

incrementally, with examples that such adaptation is practical
•  Upgrading software to make use of higher-level abstractions of

netCDF-4 enhanced data model has significant benefits
–  Data providers can use more natural representation of complex data

semantics
–  More natural conventions become possible
–  End users can access other types of data through netCDF APIs

•  As we keep pushing common tasks into libraries, scientists can
focus on doing science instead of data management

For more information

Web site: www.unidata.ucar.edu/netcdf/

Russ Rew: russ@unidata.ucar.edu

Extra Slides

New primitive types

•  Unsigned numeric types better for representing data providers
intent
–  ubyte: 8-bit unsigned interger
–  ushort: 16-bit unsigned integer
–  uint: 32-bit unsigned integer

•  64-bit integers needed for statistics and counts in large datasets
–  int64: 64-bit signed integer

–  uint64: 64-bit unsigned integer

•  Variable-length strings an overdue improvement over character
arrays
–  string: compact, variable-length strings

Groups

•  Like directories in a file system, Groups provide name spaces
and a hierarchy of containers

•  Uses
–  Factoring out common information

•  Containers for data within regions, ensembles
•  Model metadata

–  Organizing a large number of variables

–  Providing name spaces for multiple uses of same names for dimensions,

variables, attributes

–  Modeling large hierarchies

Variable-length types

Uses:

•  Ragged arrays

•  Modeling relational tables

•  Nested with compound types for in situ observational data
(profiles, soundings, time series)

•  Example: observations along ocean tracks
–  each track has an ID, a description, and a variable-length list of profiles

•  each profile has a latitude, longitude, time, and a variable-length list of
observations

–  each observation records pressure, temperature, and salinity at various depths

Compound types

Uses include:

•  Representing vector quantities like wind

•  Bundling multiple in situ observations together (profiles,

soundings)

•  Modeling relational database tuples

•  Providing containers for related values of other user-defined

types (strings, enums, ...)

•  Representing C structures, Fortran derived types portably

Nested types

•  Compound types may include other variable-length types or
compound types as members

•  Variable-length types may include other compound types or
variable-length types as members

•  Result is a potentially infinite number of user-defined data types

•  Handling this in software can be new or intimidating to software
developers

Guidance for developers

•  Add support for netCDF enhanced data model features incrementally

–  new primitive types: unsigned numeric types and strings

–  nested Groups (simple recursion)

–  enumeration types (easy, no nesting)

–  opaque types (easy, no nesting)

–  compound types with only primitive members

–  compound types with fixed-size array members

–  variable-length arrays of primitives

–  compound types with members of user-defined type

–  variable-length arrays of user-defined types

•  Look at nccopy for examples that read or write netCDF-4 data with all these
features

To ensure future access to existing data archives, Unidata is
committed to compatibility of:

  Data access: new versions of netCDF software will provide
read and write access to previously stored netCDF data.

  Programming interfaces: C and Fortran programs using
documented netCDF interfaces from previous versions will
work without change with new versions of netCDF software.

  Future versions: Unidata will continue to support both data
access compatibility and program compatibility in future
netCDF releases.

Commitment to Compatibility

