Advances in the NetCDF Data Model,
Format, and Software

Russ Rew
Coauthors: John Caron, Ed Hartnett, Dennis Heimbigner

i

UCAR Unidata
December 2010

3¢ UCAR FRocrams

Outline

Background

Recent advances

— Refactoring for interoperability
— Performance improvements
— Experience adapting software to enhanced data model

— Standards status

State of adoption of netCDF-4

Summary

NetCDF: more than a format

« Data model

— netCDF-3 classic data model: Variables, Dimensions, Attributes

— netCDF-4 enhanced data model: adds Groups, user-defined Types
* File format

— classic format, 64-bit variant

— netCDF-4 (HDF5-based) format, classic model variant
» Application programming interfaces (APIs)

— C-based APIS: C, Fortran, C++, Python, Perl, Ruby, MATLAB, IDL, ...
— Java API: Java, MATLAB

Together, the data model, file format, and APIs support
the creation, access, and sharing of scientific data

EEN

NetCDF

What is netCDF?

NetCDF {network Common Data Form) is a set of software libraries and machine-independent data formats that support the

mnetCDF creation, access, and sharing of array-oriented scientific data.

Getting Started with NetCDF

NetCDF is freely available (LICENSE). To build netCDF
download the netCDF source distribution. The distribution
contains the C/C++/F77/F90 libranies, and netCDF utilities
ncgen, ncdump, and nccopy, and a built-in OPeNDAP client
for remote data access. See the release notes for more
information. See the 4.0.1 downloads page for precompiled
binaries.

« Instaliation instructions for C, Fortran, and C++ libranes
« NetCDF for Java

+ Other interfaces to netCDF data: MATLAB, Objective-C,
Perl, Python, R, Ruby, TclTk,

« Software for manipulating or displaying netCDF data

* Who uses netCDF?

+ Developers may wish to download daly netCDF snapshot
release, or see output from netCDF testing.

NetCDF Documentation

+ Frequently Asked Questions about netCDF
* Full NetCDF Documentation
Writing NetC Be

« NetCDF Papers and Presentations
* NetCDF Credits

NetCDF Support

+ NetCDF mailing Iist

+ Subscribe to the netcdfgroup or digest of netcdfgroup or
netcdf-porting mailing lists

* Search or browse the netCDF support archives

+ Search or browse the netcdfgroup malling list archives

« Search or browse the netcdf-porting mailing list archives

Questions or comments can be sent to Unidata netCDF
Support

NetCDF Build Troubleshooter

« Special instructions for Intel and Portland Group compillers.
« Current release known problems/workarounds

 Successful build output for tested platforms

« Successful builds on other platforms

+ The usual build problems

+ Build fallure symptoms and resolution

« Troubleshooting build problems

+ Reporting problems

NetCDF News and Announcements

NetCDF 4.1.1 Release Candidate: Please try the 4.1.1 release
cand.date of the netCDF C/Fortran/C++ lioranies. This release includes
remote data access with build-in OPeNDAP client, a new utility nccopy,
ncgen that works with netCDF-4 enhanced data mode, ability to read
some HDF4 and HDFS data files, use of the parallel-netcdf lorary for
paraliel 1/ to classic format files, bug fixes and portability and
performance enhancements. Please send any feedback to support-
netcdf@unidata.ucar.edu.

Presentation on NetCDF-4/HDFS Chunking Avallable: Elena of the
HDFS5 team suggests this presentation on advanced use of HDFS
chunking for netCDF-4 users who want to maximze performance.

NetCDF \;V;'karhoprmmluls Avallable: The matenals from the 2009
NetCDF User Workshop are now available on line: 2009 NetCDF
Workshop.

NetCDF 4.0.1 Release: We are pleased to announce the release of
version 4.0.1 of the netCDF C/Fortran/C++ libraries. This release
includes bug fixes and portability and performance enhancements. See
the release notes for more information. Please send any feedback to
support-netcdf@unidata.ucar.edu.

NetCDF Wa’ksr;op On-line: The web pages from the Unidata 2008
workshop NetCDF for Data Providers and Developers are now available.

more news items >

Contact Us Site Map Search Terms and Conditions Privacy Policy Participation Policy

WP or COMMUNITY Unidata is a member of the UCAR Community Programs, is managed by the University
v v {} UCAR PROGRAMS Corporation for Atmospheric Research, and is sponsored by the National Science Foundation.

P.O. Box 3000 +« Boulder, CO 80307-3000 USA

Tel: 303-497-8843 « Fax: 303-497-8690

Development Milestones

1989: portable, self-describing data format, data model,
and software for creation, access, and sharing of
scientific data

1990's: growth of use in ocean and climate models, 3-
party software support (NCO, NCL, IDL, MATLAB)

2002: Java version with OPeNDAP client support

2003: NASA funded netCDF-4/HDF5 project; Argonne/
Northwestern parallel netCDF

2004: netCDF-Java plug ins for reading other formats,
NcML aggregation service

2007: netCDF-Java Common Data Model (access to
other formats through netCDF interface)

2008: netCDF-4 C and Fortran library with HDF5
integration, enhanced data model, parallel I/O

2009: “netCDF classic” format standard endorsed

2010: version 4.1.1 - OPeNDAP client support for C/
Fortran libraries; udunits, CF library support;
pnetcdf, HDF4 access

The netCDF “classic” data model, in UML

NetCDF Data has
Variables (eg temperature, pressure)

Attributes (eg units) —& NetCDF Data IQ——
Dimensions (eg /at, lon, level, time) ¢
Variables have o o
Name, shape, type, attributes = -
N-dimensional array of values G tiniDuLe DO 0
. . name: String name: String
Dimensions have R—— lenath: in
Name, length ebvess el |
One dimension may grow
: : : 0..% 0..* 0..%
Variables may share dimensions - -
Variable

Represents shared coordinates, grids

Six Primitive types -
| hape: D |
8-bit byte, 16-bit short, 32-bit int, ——4| shape: Dimension[] O——

. . type: primitive
32-bit float, 64-bit double, arrays of char

name: String

values: type[...]

NetCDF classic data model

Strengths

v Data model simple to
understand and explain

v Efficient implementation
freely available

v Generic applications easy
to develop

v Representation good for
gridded multidimensional
data

v Shared dimensions useful
for coordinate systems

Limitations

Small set of primitive types

Flat data model limited to
multidimensional arrays,
lists, (name, value) pairs

Flat name space not ideal
for organizing data objects

Lacks nested structures,
variable-length types,
enumerations

NetCDF classic format

Strengths

v Simple to understand and
explain

v Supported by many
applications

v Standard used in many
archives, data projects

v Mature conventions and
best practices have
evolved

Limitations

Schema changes may be
costly

No support for compression

Only one dimension can
grow efficiently

Portable representation
favors big-endian platforms

The netCDF-4 enhanced data model

A file has a top-level unnamed group. Each group may contain one or more named
subgroups, user-defined types, variables, dimensions, and attributes. Variables also
have attributes. Variables may share dimensions, indicating a common grid. One

or more dimensions may be of unlimited length.

File
DataType
. T3
0.*
Group |¢ UserDefinedType PrimitiveType
name: String —IQ— ypename: String char
0..* ' 3 L - byte
‘ 0.* A A A short
0.* Di] Enum int
imension
Attribute : float
name: String name: String > double
' . paque unsigned byte
type: DataType emyeaB it unsigned short
value: type[] - = e unsigned int
0.7 0. O omponT int64
- - unsigned int64
Var.lab ¢ VariableLength string
name: String
_" shape: Dimension]] 'o—
type: DataT) . . o ey
“;e t” ”[yp e] Variables and attributes have one of twelve primitive
values: type[...
data types or one of four user-defined types.

NetCDF enhanced data model

Strengths

v Simpler than HDF5, with similar
representational power

v" Adds shared dimensions to HDF5 data
model

v Continues support for existing data,
software, and conventions

v Eliminates netCDF classic model
limitations

v Provides nested structures: hierarchical
groups, recursive data types

v Independent features permit
incremental adaptation, adoption

On the other hand

More complex than
classic data model

More effort required to
develop general tools
and applications

Not yet widely adopted

Hence, no
comprehensive best
practices and
conventions yet

(Data Model, Format) combinations

» (Classic, Classic)

— Mature conventions, best practices (e.g. CF Conventions)
— Maximum portability, compatibility with old software

» (Classic, netCDF-4)

— Requires only relinking instead of modifying software

— Performance benefits: compression, chunking, larger variables, efficient
schema changes

* (Enhanced, netCDF-4)

— Additional data types, including user-defined

— Advantages in modeling data, including observational data
— High Performance Computing applications

— Datasets with large number of data objects

— Reading other kinds of data (HDF4, HDF5, relational, ...)

Recent advances

Standards

Refactoring architecture for interoperability
Performance improvements

Generic tools

Practical experience
Status of netCDF-4 adoption

Standards: from traction to sanction

2009-02-05: NASA Earth Science Data Systems (ESDS)
Standards Process Group endorsed netCDF classic and 64-bit
offset formats as appropriate for NASA Earth Science data.

2010-03-1: Integrated Ocean Observing System (I00S) Data
Management and Communications (DMAC) Subsystem
endorsed netCDF with Climate and Forecast (CF)
conventions as a preferred data format.

2010-09-27: Steering Committee of the Federal Geographic
Data Committee (FGDC) officially endorsed netCDF as a
Common Encoding Standard.

2010-11-05: Open Geospatial Consortium (OGC) began vote on
approving "OGC Network Common Data Form (NetCDF) Core
Encoding Standard version 1.0 " as a new OGC standard. The
vote closes on January 4, 2011.

NetCDF-Java/Common Data Model architecture

Scientific Feature Types

T T a—

M NetcdfDataset
Georeferencing Access _

! ,

NetcdfFile
OPeNDAP NetCDF-3 N » NIDS
NGML | {NetCDF 4 _ i ——{GRIB
HDF4 > GINI
Nexrad]
Index Space Access » DMSP

C library refactored for interoperability

Common interfaces and code ‘

factored into a new “dispatch layer” Application |
|
« Simpler code
« Easier maintenance { netCDF]
 Easier handling of additional |
formats & protocols (1/0O plugins)
{ libdispatch }
I I | I
libsrc libsrc4 libncdap3 libncdap4 h otgler
(classic) (netCDF-4) (OPeNDAP) (OPeNDAP) andiers

netCDF
classic

remote
subsets
(read only)

remote
subsets
(read only)

HDF4, HDF5 other
(read only) “formats”

Performance improvements

Refactored read code for large speedup on opening netCDF-4
files with compressed or chunked variables

Speedup variable and dimension lookup by name
Improved memory allocation to reduce memory footprint
Reduced memory when parallel 1/0 used

Eliminated memory leaks

Improved read code w.r.t. handling a large number of netCDF-4
attributes and variables

Applied intelligent caching to remote access for OPeNDAP client

Some of these improvements are in upcoming version 4.1.2

Generic tools

ncgen
netCDF CDL
data text
ncdump
-b
NN . netcDF
/ (data) netCDF nccopy . NetCDF
text data data
CDL editor
(text)
ncgen ‘I Iang program | te'xt
P (C, F77, or CpL L"cgen -l editor edited run netCDF
Java) program program data

Adapted generic tools to netCDF-4 enhanced data model

ncdump: converts netCDF data to CDL text form
ncgen: converts CDL text to netCDF data or generates program
nccopy: copies netCDF data, optionally converting to a different form

Proved practicality of handling potentially infinite number of
user-defined nested

Tool adaptation led to API additions

Experience developing nccopy utility

Shows any netCDF-4 data can be accessed through API without
previous or built-in knowledge of user-defined data types

Showed netCDF-4 API is adequate for handling arbitrary nesting
of groups and user-defined types

Provides evidence that programming generic netCDF-4
applications is not too difficult

— Classic data model: 500 lines of C
— Enhanced data model: 900 lines of C

Demonstrates usefulness of additional higher-level APls for tool
developers

— lterator APIls for simpler data access

— APIs that make recursion unnecessary (e.g. visiting groups, comparing
values of a user-defined type)

Practical experience

» Most experience to date is with netCDF-4 classic
model format

— uses netCDF-3 classic data model, APIs
— uses netCDF-4 HDF5-based format
— provides backward compatibility

— Enables performance features: compression,
multidimensional tiling (chunking), efficient schema changes,
parallel 1/O, ...

» Adoption proceeding smoothly in a 3-step process

Relink applications with netCDF-4 library

2. Continue use of classic model, netCDF-3 APlIs but with netCDF-4
classic model format to get performance benefits

3. Make use of features of enhanced model, as needed/supported

Last year: game of “chicken”; who goes first?

Data producers

— Waiting until netCDF enhanced data
model features are supported by more
software, development of conventions

Developers

— Waiting for netCDF data that requires
enhanced model and for development of
conventions

Convention creators

— Waiting for data providers and software
developers to identify needs for new
conventions based on usage experience

Result: “chicken-and-egg logjam”

— Delays effective use of advances in scientific
data models for large and complex collections

Status of netCDF-4 adoption: Logjam
appears to be broken

NetCDF-4 enhanced model support in language APIs: C, Java
(read only), C++ (beta), Fortran

Partial support for netCDF-4 enhanced model also in NCO,
NCL, Panoply, Python API, ...

NetCDF-4 classic model support in analysis and visualization
apps: IDL, GrADS, CDAT, MATLAB, IDV, NCO, NCL, CDO,
PyNGL, ncview, Panoply, Ferret, OGC WMS and WCS clients

Data providers using netCDF-4 classic model format for
transparent compression and chunking: groups in NASA, NOAA,
GFDL, COLA

CMIP5 decided to continue using classic model and classic
format (no compression) due to time accessing compressed
data on server

Concluding Remarks

Data providers may begin to use compression/chunking with
confidence that most users and software can read it
transparently, after relinking with netCDF-4

Developers may adapt software to netCDF-4 format by relinking

Developers may adapt software to enhanced data model
incrementally, with examples that such adaptation is practical

Upgrading software to make use of higher-level abstractions of
netCDF-4 enhanced data model has significant benefits

— Data providers can use more natural representation of complex data
semantics

— More natural conventions become possible
— End users can access other types of data through netCDF APIs

As we keep pushing common tasks into libraries, scientists can
focus on doing science instead of data management

For more information

Web site: www.unidata.ucar.edu/netcdf/

Russ Rew: russ@unidata.ucar.edu

Extra Slides

New primitive types

Unsigned numeric types better for representing data providers
intent

— ubyte: 8-bit unsigned interger

— ushort: 16-bit unsigned integer

— uint: 32-bit unsigned integer

64-bit integers needed for statistics and counts in large datasets
— int64: 64-bit signed integer

— uint64: 64-bit unsigned integer

Variable-length strings an overdue improvement over character
arrays

— string: compact, variable-length strings

Groups

« Like directories in a file system, Groups provide name spaces
and a hierarchy of containers

e Uses

— Factoring out common information

» Containers for data within regions, ensembles
» Model metadata

— Organizing a large number of variables

— Providing name spaces for multiple uses of same names for dimensions,
variables, attributes

— Modeling large hierarchies

Variable-length types

Uses:

Ragged arrays
Modeling relational tables

Nested with compound types for in situ observational data
(profiles, soundings, time series)

Example: observations along ocean tracks

— each track has an ID, a description, and a variable-length list of profiles

» each profile has a latitude, longitude, time, and a variable-length list of
observations

— each observation records pressure, temperature, and salinity at various depths

Compound types

Uses include:

Representing vector quantities like wind

Bundling multiple in situ observations together (profiles,
soundings)

Modeling relational database tuples

Providing containers for related values of other user-defined
types (strings, enums, ...)

Representing C structures, Fortran derived types portably

Nested types

Compound types may include other variable-length types or
compound types as members

Variable-length types may include other compound types or
variable-length types as members

Result is a potentially infinite number of user-defined data types

Handling this in software can be new or intimidating to software
developers

Guidance for developers

« Add support for netCDF enhanced data model features incrementally

— new primitive types: unsigned numeric types and strings
— nested Groups (simple recursion)

— enumeration types (easy, no nesting)

— opaque types (easy, no nesting)

— compound types with only primitive members

— compound types with fixed-size array members

— variable-length arrays of primitives

— compound types with members of user-defined type

— variable-length arrays of user-defined types

« Look at nccopy for examples that read or write netCDF-4 data with all these
features

Commitment to Compatibility

To ensure future access to existing data archives, Unidata is
committed to compatibility of:

. Data access: new versions of netCDF software will provide
read and write access to previously stored netCDF data.

« Programming interfaces: C and Fortran programs using
documented netCDF interfaces from previous versions will
work without change with new versions of netCDF software.

. Future versions: Unidata will continue to support both data
access compatibility and program compatibility in future
netCDF releases. ‘ﬂ

unldaTa - Ry

