

Show of Hands...

 How many traveled to be here?
 University/Gov't/Industry
 How many use netCDF?
 Primary programming language for netCDF?
 Other data formats of interest?

NetCDF-4 as a Four-part Mini-series

Introduction to NetCDF
What is netCDF?

NetCDF Data Models
How we think of data.

NetCDF Software Libraries
Using netCDF APIs.

Secrets of NetCDF
Stuff known only to the netCDF insiders!

Introduction to NetCDF
 History of NetCDF: Classical and NetCDF-4

Eras
 The Four NetCDF Disk Formats
 The Classic and Enhanced Data Models
 Backward Compatibility
 Conventions
 HDF5 Interoperability
 Tools for NetCDF
 NetCDF Documentation and Support

What is NetCDF?

 NetCDF (network Common Data Form) is a set
of software libraries and machine-independent
data formats that support the creation,
access, and sharing of array-oriented scientific
data.

 NetCDF now supports four binary formats and
APIs in many programming languages.

 There is a large body of existing netCDF
software, many netCDF programmers, and lots
and lots of netCDF data.

Data Models

Variable

Attribute
Attribute

Variable

Attribute
Attribute

Attribute
Attribute

Variable

Attribute
Attribute

Variable

Attribute
Attribute

Attribute
Attribute

A netCDF-4 file can organize variable, dimensions, and
attributes in groups, which can be nested.

Variable

Attribute
Attribute

Attribute
Attribute

Commitment to Backward Compatibility
Because preserving access to archived data
for future generations is sacrosanct:

NetCDF4 provides both read and write access to all
earlier forms of netCDF data.
Existing C, Fortran, and Java netCDF programs will
continue to work after recompiling and relinking.
Future versions of netCDF will continue to support
both data access compatibility and API compatibility.

Conventions
The NetCDF User's Guide recommends some
conventions (ex. "units" and "Conventions"
attributes).

Conventions are published agreements about
how data of a particular type should be
represented to foster interoperability.

Most conventions use attributes.
Use of an existing convention is highly
recommended. Use the CF Conventions, if
applicable.

A netCDF file should use the global
"Conventions" attribute to identify which
conventions it uses.

The Climate and Forecast
Conventions

The CF Conventions are becoming a widely
used standard for atmospheric, ocean, and
climate data.

The NetCDF Climate and Forecast (CF)
Metadata Conventions, Version 1.3, describes
consensus representations for climate and
forecast data using the netCDF-3 data model.

http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.3/cf-conventions.html

http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.3/cf-conventions.html

HDF5/NetCDF-4 Interoperability

− NetCDF-4 can interoperate with HDF5 with
a SUBSET of HDF5 features.

− Will not work with HDF5 files that have
looping groups, references, and types not
found in netCDF-4.

− HDF5 file must use new dimension scale
API to store shared dimension info.

− If a HDF5 follows the Common Data Model,
NetCDF-4 can interoperate on the same
files.

− HDF5 files created with netCDF-4 look like
normal HDF5 files, and use dimension
scales.

Tools for NetCDF: ncdump and
ncgen

 These two tools come with the netCDF
distribution, and are supported by the netCDF
programming team.

 ncdump converts a netCDF data file to human-
readable text form.

 ncgen takes the text form (CDL) and creates a
netCDF data file.

 Both support netCDF-4 for classic model files,
but ncgen does not support enhanced model
(but this is under development.)

Additional NetCDF Tools

 Many graphics tools support netCDF, including
grads, IDV, NCL.

 Command line tools include the NetCDF
Command Operators (NCO.)

 Tools can quite easily upgrade to handle
netCDF-4/HDF5 classic model files.

 Tools have to be substantially enhanced to
handle the enhanced model.

 A partial list of tool can be found on the
netCDF web page.

Documentation for NetCDF
Extensive documentation can be found on-line:
 NetCDF Users Guide
 NetCDF Installation and Porting Guide
 NetCDF Tutorial
 API References for Java, C, F77, F90, and CXX
 FAQ
 One or Two Day NetCDF Workshop
 Example programs in C, F77, F90, C++, Java,

Python, MATLAB, Perl, IDL
 Example datasets illustrating CF conventions
 Find all documentation on the web

Documentation

Support for NetCDF

 There is no dedicated support team for
netCDF. All netCDF support is handled by
netCDF programmers.

 There are many support resources on-line,
including a database of all support questions
and responses.

 Most support questions are related to building
netCDF. Before sending a support request, see
the “Build Troubleshooter” section of the
home page.

Email Support
Send bug reports and support requests to:

support-netcdf@unidata.ucar.edu

Your support email will enter a support tracking
system which will ensure that it does not get lost.

 But it may take us a while to solve your problem...

mailto:support-netcdf@unidata.ucar.edu

Questions So Far?

NetCDF Data Models

 The Classic Data Model
− UML and Text Descriptions
− Introducing the Common Data Language (CDL)
− Dimensions
− Variables

 Coordinate Variables
− Attributes

 NetCDF-4 Features That Don't Use Enhanced
Model

 The Enhanced Data Model
− UML and Text Descriptions
− HDF5 Features Now Available in NetCDF

The Classic NetCDF Data Model

UML Classic NetCDF Data Model

Common Data Language of Simple
Classic Model File

netcdf example { // example of CDL notation
 dimensions:

 x = 3 ;
 y = 8 ;

 variables:
 float rh(x, y) ;

 rh:units = "percent" ;
 rh:long_name = "relative humidity" ;

 // global attributes
 :title = "simple example, lacks some conventions" ;

 data:
 rh =
 2, 3, 5, 7, 11, 13, 17, 19,
 23, 29, 31, 37, 41, 43, 47, 53,
 59, 61, 67, 71, 73, 79, 83, 89 ;
 }

CDL Details
This example has only one variable, but
multiple variables of may be included in a
netCDF file.

You can use the ncdump utility to get the CDL
form of a binary netCDF file (more on this
later).

You can use the ncgen utility to generate a
binary netCDF file from CDL (more on this
later).

This simple example neglects recommended
best practices for netCDF data.

NcML is an XML-based notation similar to CDL
for netCDF data

Dimensions
Dimensions may be shared among variables,
indicating a common grid.

Dimensions may be associated with
coordinate variables to identify coordinate
axes.

In the classic netCDF data model, at most one
dimension can have the unlimited length,
which means variables can grow along that
dimension.

In the enhanced data model, multiple
dimensions can have the unlimited length.

Variables in the Classic Model

In the classic data model, the type of a
variable is the external type of its data as
represented on disk, one of: char, byte, short,
int, float, double.

The shape of a non-scalar variable is specified
with a list of dimensions.

A variable may have attributes to specify
properties such as units.

A variable is equivalent to a HDF5 dataset.

A Strong Convention: Coordinate
Variables

A variable with the same name as a dimension
is called a coordinate variable.

Examples: lat, lon, level, and time.
The notion of coordinate variables has been
generalized to multidimensional coordinate
axes in the netCDF Java library and the
Common Data Model it supports.

Closest HDF5 equivalent: dimension scales.

Coordinate Variable CDL Example
netcdf elev1 {
dimensions:

lat = 180 ;
lon = 360 ;

variables:
float lat(lat) ;

lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;

float lon(lon) ;
lon:standard_name = "longitude" ;
lon:units = "degrees_east" ;

short elev(lat, lon) ;
elev:standard_name = "height" ;
elev:missing_value = 32767s ;
elev:units = "meter" ;

Attributes in the Classic Model

Like variables, the type of an attribute may be
one of char, byte, short, int, float, or double.

Attributes are scalar or 1D.
Global attributes apply to a whole file. Variable
attributes apply to a specific variable.

NetCDF conventions are defined primarily in
terms of attributes.

Attributes cannot have attributes.

More Realistic Example
netcdf co2 {
dimensions:

T = 456 ;
variables:

float T(T) ;
T:units = "months since 1960-01-01" ;

float co2(T) ;
co2:long_name = "CO2 concentration by volume" ;
co2:units = "1.0e-6" ;
co2:_FillValue = -99.99f ;

// global attributes:
:references = "Keeling_etal1996 Keeling_etal1989

Keeling_etal1995" ;

Advantages of the Classic Model

 Files that follow the classic model will be
compatible with existing netCDF software.

 Classic model is simple but powerful.
 We advise that you use the classic model

wherever possible, for maximum
interoperability.

Not All NetCDF-4 Features Require
the Enhanced Model!

Many features of the HDF5 layer can be used
without using the enhanced data model:

 parallel I/O
 zlib compression/decompression
 endianness control
 chunking
 expanded size limits

NetCDF-4 Enhanced Model

 The classic model is expanded to include
groups, new types (including user-defined
types), multiple unlimited dimensions.

 Using the enhanced model requires rewriting
the reading programs.

NetCDF-4 Features from HDF5

 The enhanced netCDF-4 data model includes
new types:

− String type
− Unsigned ints and 64-bit ints
− Compound type
− VLEN type
− Enum type
− Opaque type

More NetCDF-4 Enhanced Model
Features

 Multiple unlimited dimensions are allowed
(and in any order.)

 Groups are supported.
 Dimensions are visible to any sub-groups.

No enddefs and redefs Needed

 In classic netCDF model, enddef is needed to
end define mode, redef to re-enter define
mode.

 With netCDF-4 files, this is not necessary.
These functions will be called automatically,
as needed.

 If you use the NC_CLASSIC_MODEL flag when
creating the file, you must explicitly call
enddef and redef.

Questions About Data Models?

NetCDF Software Libraries

 The NetCDF APIs.
 Architecture of C-based Libraries
 Simple C Example
 Simple Fortran90 example

NetCDF APIs

The netCDF core library is written in C and
Java.

Fortran 77 is “faked” when netCDF is built –
actually C functions are called by Fortran 77
API.

A C++ API also calls the C API, a new C++ API
us under development to support netCDF-4
more fully.

NetCDF C/Fortran/CXX Architecture

NetCDF-4 C

NetCDF-3 C

NetCDF classic NetCDF-4/HDF5

HDF5 1.8.0

zlib
NetCDF 64-bit offset

F77 CXX

F90

User App.

C API: Simple Example

 nc_create(FILE_NAME, NC_CLOBBER, &ncid);
 nc_def_dim(ncid, "x", NX, &x_dimid);
 nc_def_dim(ncid, "y", NY, &y_dimid);
 dimids[0] = x_dimid;
 dimids[1] = y_dimid;
 nc_def_var(ncid, "data", NC_INT, NDIMS,

 dimids, &varid);
 nc_enddef(ncid);
 nc_put_var_int(ncid, varid, &data_out[0][0]);
 nc_close(ncid);

F90 API: Simple Example

call check(nf90_create(FILE_NAME, NF90_CLOBBER,
ncid))

call check(nf90_def_dim(ncid, "x", NX, x_dimid))
call check(nf90_def_dim(ncid, "y", NY, y_dimid))

dimids = (/ y_dimid, x_dimid /)

call check(nf90_def_var(ncid, "data", NF90_INT, dimids,
varid))

call check(nf90_enddef(ncid))
call check(nf90_put_var(ncid, varid, data_out))
call check(nf90_close(ncid))

Parallel I/O Example

 nc_create_par(FILE, NC_NETCDF4|NC_MPIIO, comm, info, &ncid);

 nc_def_dim(ncid, "d1", DIMSIZE, dimids);
 nc_def_dim(ncid, "d2", DIMSIZE, &dimids[1]);
 nc_def_var(ncid, "v1", NC_INT, NDIMS, dimids, &v1id);

 /* Set up slab for this process. */
 start[0] = mpi_rank * DIMSIZE/mpi_size;
 start[1] = 0;
 count[0] = DIMSIZE/mpi_size;
 count[1] = DIMSIZE;
 nc_var_par_access(ncid, v1id, NC_INDEPENDENT);
 nc_put_vara_int(ncid, v1id, start, count,
 &data[mpi_rank*QTR_DATA]);

Compound Type Example

 nc_create(FILE_NAME, NC_NETCDF4, &ncid);
 nc_def_compound(ncid, sizeof(struct sf_med_rec), "SFMedRec",
 &typeid);
 nc_insert_compound(ncid, typeid, "num_heads",
 NC_COMPOUND_OFFSET(struct sf_med_rec,
 num_heads), NC_UBYTE);

 nc_insert_compound(ncid, typeid, "num_hairs",
 NC_COMPOUND_OFFSET(struct sf_med_rec,
 num_hairs), NC_UINT64);
 nc_def_dim(ncid, STARDATE, DIM_LEN, &dimid);
 nc_def_var(ncid, "starbase_13", typeid, 1, dimids, &varid);
 nc_put_var(ncid, varid, med_data_out);
 nc_close(ncid);

Group Example

 /* Create a file with one group, a group to contain data about
 Henry VII. */
 if (nc_create(FILE_NAME, NC_NETCDF4, &ncid)) ERR;
 if (nc_def_grp(ncid, HENRY_VII, &henry_vii_id)) ERR;
 if (nc_inq_grp_parent(henry_vii_id, &parent_ncid)) ERR;
 if (parent_ncid != ncid) ERR;
 if (nc_close(ncid)) ERR;

F90 NetCDF-4 Example

 call check(nf90_create(FILE_NAME, nf90_netcdf4, ncid))
 call check(nf90_def_opaque(ncid, OPAQUE_SIZE, &
 OPAQUE_TYPE_NAME, opaque_typeid))
 call check(nf90_put_att_any(ncid, NF90_GLOBAL, &
 att_name, opaque_typeid, 1, opaque_data))
 call check(nf90_def_var(ncid, var_name, nf90_int64, varid))
 call check(nf90_put_var(ncid, varid, BIG_NUMBER))
 call check(nf90_close(ncid))

C++ and NetCDF-4

 Existing C++ API works with netCDF-4 classic
model files.

 The existing API was written before many
features of C++ became standard, and thus
needed updating.

 A new C++ API has been partially developed
by Shanna-Shaye Forbes, a Unidata student
employee.

 You can build the new API (which is not
complete!) with --enable-cxx4.

Questions About Software
Libraries?

Secrets of NetCDF

 Converting to netCDF-4
 Using Compression
 NetCDF Development Process
 NetCDF Testing
 NetCDF Development Process
 Future Plans

Converting Existing NetCDF Code
to NetCDF-4

 NetCDF-4.0 is a drop-in replacement for
netCDF-3.x. By default all created files are in
classic format.

 To create netcdf4/hdf5 files, change the mode
parameter in nc_create() calls.

 Existing write code will work the same way,
but a netcdf4/hdf5 file will be produced.

 NetCDF reading software must be upgraded
(i.e. relinked) with the netCDF-4.0 release.

 No modifications needed in reading code.

More on Converting to NetCDF-4

 When using the classic model, use the
NC_CLASSIC_MODEL flag when creating the
file.

 To use enhanced model, but writing and
reading software must be modified.

 Some advanced structures are problematic in
Fortran. We don't know how to handle
compound types in a machine independent
way, for example.

 Makefiles must be changed to include:
-lnetcdf -lhdf5_hl -lhdf5 -lz

Using Compression

 NetCDF-4 supports zlib deflation.
 szlib data may be read through netCDF-4, but

not written. Is there interest in this?
 You can't deflate while writing with parallel

I/O.
 Set deflate with the nc_def_var_deflate after

the variable is defined, but before the first
endef.

Deflate of
2D Radar

Data

Testing of C/F77/F90/C++ Libraries

 Cross-platform testing takes place nightly at
Unidata.

 The daily snapshot release is a complete
netCDF release, version “netcdf-4.0-
snapshot2008101402”

 Snapshot passes “make distcheck” on Linux
platform before its release.

 Get the daily snapshot for the latest updates
to the code and documentation.

 Snapshot documentation us on-line:
http://www.unidata.ucar.edu/software/netcdf/docs_snapshot/

http://www.unidata.ucar.edu/software/netcdf/docs_snapshot/

Test Platforms

 Each build includes a full run of the default
netCDF tests.

 The automatic testing of the default build
includes Linux, AIX, IRIX, Mac, SunOS, Cygwin,
HP-UX (netcdf-3 only) and Visual Studio builds.

 Various C compilers are tested: gcc (several
versions), Intel, PG, AIX, Sun, HPUX, and IRIX.

 Various Fortran compilers are tested: g95,
gfortran (pre and post 4.2), ifort (9.1 and
10.1), PGI, AIX, IRIX, HPUX, and even g77.

More on Testing

 Additional, optional tests are also run on some
platforms, including MPI I/O builds, and tests
for very large files.

 Full output of configure and make, as well as
the config.log, are available from the hyperlink
on the test page.

 In case of problems, find your platforms and
take a look.

NetCDF C/Fortran/C++
Development Process

 Agile programming, with aggressive
refactoring, and heavy reliance on automatic
testing.

 Daily snapshot allows bug fixes to be released
immediately.

 Our highest priority is fixing bugs so that we
do not have a bug-list to maintain and
prioritize.

Russ Rew – core netcdf-3, ncdump,
ncgen, C++

Dennis Heimbigner – OpenDAP
client, ncgen enhanced

Ed Hartnett – core netcdf-4, tests,
Fortran APIs and tests

Future Plans
 Upcoming C/F77/F90/C++ 4.0.1 maintenance

release in beta this month.
 Java JNI to allow writing of netCDF-4 files from

Java.
 First quarter 2009: 4.1 release of C libraries

including built-in OpenDAP client, ncgen
support for netCDF-4 enhanced model.

 NetCDF 4.2 and beyond: development of DAP
client to fully support netCDF-4 enhanced
model.

 Development of libcf C/Fortran library to assist
with CF conventions.

Questions About Using NetCDF-4?

Contact Information

NetCDF website:
www.unidata.ucar.edu/software/netcdf

Ed Hartnett - ed@unidata.ucar.edu

http://www.unidata.ucar.edu/software/netcdf

