
NetCDF Build and Test
System

Ed Hartnett, 1/25/8

Outline

NetCDF Repository

Building NetCDF

Testing NetCDF

NetCDF Code Repository

We use cvs for netCDF code repository.

The cvs repository module is called netcdf-3, but should just be
called netcdf, since it holds versions 2, 3, and 4 of the API.

Someday we would like to move to subversion.

Repository Suggestions
Coding spheres of influence for each developer. (Russ:
ncdump, ncgen, libsrc. Ed: top level, libsrc4, fortran, f90.
Dennis: new directory). Test dirs open to all.

Don't beak the build, but if you do, fix it soon. If it becomes a
problem, other developers can roll back code changes to make
the build work.

Check in frequently (passing make check on your machine is
good enough to check in).

No cvs banches without serious thought.

Notification of cvs updates by team members is very helpful,
and will become more so with Dennis working on the code.

Autotools Background
Autotools are GNU standard, and (probably) the only ones that
meet strict requirements for maximum portability.
NetCDF has used the GNU autoconf technology since 2004.
GNU automake and libtool were used starting with the 3.6.0
(2006).
Code does not contain dependencies on platform, but on
features. The configure script runs tests for each feature
without regard to platform.
It is hard in the short term, but leads to wide portability, even to
new platforms.

Autotools puts burden on developers to make it easy for the
user.

Complications: Fortran
The F77 API is just the C API, with function names changed,
and parameters munged to look more Fortrany.

To work the F77 API runs some tests in configure script, and
also makes a compiler-based choice of how to handle calling
Fortran from C.

The F90 API is F90 wrapper code, which calls the F77 API.

This is the biggest source of support and portability problems.
We hope to replace it with fortran's portable new way of calling
C (Fortran 2003).

Fortran introduces many complexities into the build system.
These will be ignored in this presentation.

Development Using Autotools
Developer modifies configure.ac in top level directory, and
Makefile.am in every directory.

Only developer files are checked into the repository. Generated
files are not checked in.

Each developer runs autoreconf -i to generate configure script
and other files.

Then run the configure script and use make to build the
software.

Developers must have autotools installed, but user only needs
POSIX2 commands, not autoconf, automake, and libtool.

The configure.ac File

The configure.ac file is fed to autoconf to generate the shell
script called configure.

The configure.ac file can be pretty annoying to code.

Most everything can (and should) be accomplished with pre-
existing macros.

What configure.ac Looks Like

AC_MSG_CHECKING([whether netCDF-4 is to be built])
AC_ARG_ENABLE([netcdf-4],
 [AS_HELP_STRING([--enable-netcdf-4],
 [build with netcdf-4 (HDF5 is required)])])
test "x$enable_netcdf_4" = xyes || enable_netcdf_4=no
AC_MSG_RESULT($enable_netcdf_4)
AM_CONDITIONAL(USE_NETCDF4, [test x$enable_netcdf_4 = xyes])
if test "x$enable_netcdf_4" = xyes; then
 AC_DEFINE([USE_NETCDF4], [1], [if true, build netCDF-4])
 AC_DEFINE([H5_USE_16_API], [1], [use HDF5 1.6 API])
fi

Some NetCDF configure Options
--help Show all options.

--enable-shared Turns on shared library build.

--prefix=/someplace Where to install netCDF.

--enable-netcdf-4 Turns on netCDF-4.

--with-hdf5=/someplace Where to find HDF5.

--with-zlib=/someplace Where to find zlib.

Output of configure to stdout

configure: netCDF 4.0-snapshot2008012802
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

etc.

Output of configure for Build

When the configure script is run, a C header file conig.h is
created.

The Makefile.in files are used to construct the user Makfiles.

The config.h File

Tests in the configure script can set pre-processor macros.
Configure writes config.h in the top-level directory.
All netCDF code files must include config.h. Otherwise they
may break tests in non-obvious ways.
The include for config.h must come first in the code.
Users do not include config.h. It is an internal netCDF file.
config.h is produced by configure, but may be edited by hand
for debugging or developer convenience. It is not checked in.

What config.h Looks Like
/* use HDF5 1.6 API */
#define H5_USE_16_API 1

/* Define to 1 if you have `alloca', as a function or macro. */
#define HAVE_ALLOCA 1

/* Define to 1 if you have the <dlfcn.h> header file. */
#define HAVE_DLFCN_H 1

/* Define to 1 if you have the <hdf5.h> header file. */
#define HAVE_HDF5_H 1

/* Define to 1 if you have the <inttypes.h> header file. */
#define HAVE_INTTYPES_H 1

The Makefiles
NetCDF developers edit the Makefile.am in each directory.

The automake utility converts these to Makefile.in files to
include in the distribution.

The configure script converts Makefile.in files to Makefiles. The
user then runs their local make to do the build.

Makefile.am can contain conditionals which are set in the
configure script. Example for conditional BUILD_F77:

if BUILD_F77
F77_DIR = fortran
F77_TEST = nf_test
endif

Using Autotools - the Cook Book
Recipie

In summary: modify the configure.ac in the top level code
directory, and the Makefile.am in each directory.

Check out from cvs, run autoreconf, then configure, then make:
cvs co netcdf-3 && cd netcdf-3 && autoreconf -i && .
/configure && make check
Some important standard make targers: all, check, install,
clean, distclean, maintainer-clean, dist, distcheck.

Complication: NetCDF Has Two
Release Tracks

Users may get either netCDF-3.x or netCDF-4.x. Eventually we
anticipate ending the 3.x branch.
The 4.x branch can build the 3.x branch as well.
The two distributions are the same except for the configure.ac
file.

The configure.40 is for netCDF-4.x configure.ac is for
 netCDF-3.x.

If this were to be permanent, or involved more than one file, I
would use a cvs branch.

Building NetCDF-4 from Repository

cvs co netcdf-3
cd netcdf-3
cp configure.40 configure.ac
autoreconf -i
./configure --enable-netcdf-4 --with-hdf5=/upc/share/ed/local/buddy
make check

Suggestions for Autotools Development
There are lots of quirks to using autotools. As they say in their
documentation: "autoconf is a mess because the world is a
mess."

Most simple programming tasks can be easily handled in the
local Makeile.am. (Then just run make and it will be handled.)

The most common configure.ac edit is to add an option, which
can be done with cut-and-paste.

The full test suite will turn up some subtle mistakes, which Ed
can fix.

Nightly Build and Test

Both netCDF-3.x and netCDF-4.x are built and tested nightly on
Unidata machines.

If make distcheck passes on shecky, a daily snapshot is
released to the ftp and web sites.

Snapshot release gets version changed to include the date and
time, for example:
3.6.2-snapshot2007073018

Test Scripts

Three bash scripts run tests: test_cvs_module.sh,
test_one_machine.sh, and test_lib.sh.

test_cvs_module.sh will check out from cvs, build and test,
put out snapshot distribution, and then call test_one_machine.
sh for a list of test machines.

test_one_machine.sh will get the snapshot dist, unpack, and
test it. (Just like a user would).

Test scripts are checked into cvs. Do cvs co builder to get test
system. (But I've only every run it on shecky).

Running the Test Scripts

The test scripts are run each night (at 1 a.m.) but can also be
run (by Ed) from the command line.

Various options help make this a tool for checking
completeness of distribution and cross-platform portability.

-v verbose mode
-n netCDF-4 build
-m machine1 machine2 run tests on these machines only
-q run quickly by only doing one test on each machine.

Verbose Test Script Output
bash-3.2$./test_cvs_module.sh -vnqm buddy

release = all = local = machine_spec = 1 machine_list = buddy quickly = 1 netcdf4 = 1

setting up netcdf-4 build
package netcdf-4.0-snapshot2008012608 dist_dir /content/software/netcdf/builds/snapshot/netcdf-4 docdir

/content/software/netcdf/netcdf-4/newdocs

testing netcdf-4.x

getting the code from CVS...
output to /content/software/netcdf/builds/snapshot/netcdf-4 and /content/downloads/netcdf/netcdf-

snapshot

autoreconf in /shecky/n4_test, output to /upc/share/ed/output/nc4_autoreconf.txt...

building 4.0...
shecky building with make check distcheck, options --enable-netcdf-4 --with-

hdf5=/upc/share/ed/local/shecky --with-zlib=/upc/share/ed/local/shecky
copying /upc/share/ed/output/nc4_make_distcheck_out.txt to ed@conan:

/content/software/netcdf/builds/snapshot/netcdf-4

shecky packaging docs for website...

netcdf_docs.tar.gz 100% 9509KB 9.3MB/s 00:00
 *** FAILURE on Linux (shecky), gcc/g++/gfortran 4.1.1 with make check distcheck with --enable-netcdf-4

--with-hdf5=/upc/share/ed/local/shecky --with-zlib=/upc/sh\

are/ed/local/shecky, see nc4_make_distcheck_out.txt

output.html 100% 3279 3.2KB/s 00:00

toc.xml 100% 1121 1.1KB/s 00:00

appending a record with success 0 and fail 1

Finished testing netcdf-3 at Sat Jan 26 08:55:22 MST 2008

Test Output

HTML pages are generated and copied to conan with test
results.

XML pages are generated and copied to conan with pointers to
daily snapshot and binary distributions.

Text summary of results emailed to netCDF developers.

Documentation is generated in it's many formats and copied to
web site.

Test System Future Work

The test system is in a constant state of development as I tinker
with it. Some imminent features:

a button on the snapshot results page to launch testing.
test scripts portable across developer machines so that
each developer can run them from the command line.
generate named release instead of just snapshot release,
and use cvs tag to tag the source automatically.
it would not be hard to make this script work on any cvs
module, not just netcdf; libcf is the next target, when
development kicks off there again.

Feel free to also tinker with thee test scripts.

Adding Tests
Add tests in directory with the code they test.

Test programs must accept no arguments, and return 0 for
success, something else for failure.

I always name them tst_something, like tst_compounds.c.

I have them create test data files with the same name as the
program (that is, tst_compounds.c produces data file
tst_compounds.nc).

It's easier to create test files as needed rather than create them
and ship them with the dist, but when shipped, I call them
ref_tst_something.nc. (ref = reference).

Test Requirements
Test requirements:
www.unidata.ucar.edu/software/netcdf/netcdf-4/req_4_0.html

All tests are automated and can be run from makefile
targets.
Some tests make take excessive time. Make test may skip
very lengthy tests...
All supported language interfaces are tested.
Test programs do not accept or require command line
options.
Test programs provide feedback in accordance with netCDF
test look and feel.

etc.

Suggestions for Tests
Do not take any tests away, or even make modifications. Take
a copy of the test and make modifications to that.

Repeating code in tests is OK, if it allows simpler tests to co-
exist with more complicated tests. The simpler a failed test is,
the easier to debug.

Some macros are defined in nc_tests.h to help with testing:
ERR - report "unexpected result" and continue.
ERR_RET - same, but exits program immediately.
SUMMARIZE_ERR - summarizes result of one set of tests.
FINAL_RESULTS - adds up errors and exits with 0 (no
errors) or 2 (one or more errors).

More Test Suggestions

Don't write throw-away tests, always add them to the repository
and build.

Build up to complex tests with a series of simple tests to aid
debugging.

Shell scripts can also be used as test, but they add complexity.
However for testing ncgen/ncdump they are needed.

